A Computational Approach to Conway's Thrackle Conjecture

被引:0
作者
Fulek, Radoslav [1 ]
Pach, Janos [2 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, City Coll, New York, NY 10031 USA
来源
GRAPH DRAWING | 2011年 / 6502卷
关键词
GRAPHS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A drawing of a graph in the plane is called a thrackle if every pair of edges meets precisely once, either at a common vertex or at a proper crossing. Let t(n) denote the maximum number of edges that a thrackle of n vertices can have. According to a 40 years old conjecture of Conway, t(n) = n for every n >= 3. For any epsilon > 0, we give an algorithm terminating in e(O((1/epsilon 2)In(1/E))) steps to decide whether t(n) <= (1+epsilon)n for all n >= 3. Using this approach, we improve the best known upper bound, t(n) <= 3/2(n - 1), due to Cairns and Nikolayevsky, to 167/117n < 1.428n.
引用
收藏
页码:226 / +
页数:3
相关论文
共 19 条
[11]  
ERDOS P, 1972, COMBINATORICA, P351
[12]  
Hopcroft J., J ASS COMPUTING MACH, V21, P549
[13]  
Hopf Heinz., 1934, Jahresbericht Deutsch. Math.-Verein, V43, P114
[14]   On Conway's thrackle conjecture [J].
Lovasz, L ;
Pach, J ;
Szegedy, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 18 (04) :369-376
[15]  
Perlstein A, 2008, GRAPH COMBINATOR, V24, P373, DOI 10.1007/s00373-008-0796-6
[16]   SUBTHRACKLEABLE GRAPHS AND 4 CYCLES [J].
PIAZZA, BL ;
RINGEISEN, RD ;
STUECKLE, SK .
DISCRETE MATHEMATICS, 1994, 127 (1-3) :265-276
[17]  
RINGEISEN RD, 1996, C NUMER, V115, P91
[18]  
Rosenstiehl P., 1976, C R ACAD SCI PARIS A, V283, pA551
[19]  
WOODALL DR, 1969, COMBINATORIAL MATH I, P335