A Computational Approach to Conway's Thrackle Conjecture

被引:0
作者
Fulek, Radoslav [1 ]
Pach, Janos [2 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, City Coll, New York, NY 10031 USA
来源
GRAPH DRAWING | 2011年 / 6502卷
关键词
GRAPHS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A drawing of a graph in the plane is called a thrackle if every pair of edges meets precisely once, either at a common vertex or at a proper crossing. Let t(n) denote the maximum number of edges that a thrackle of n vertices can have. According to a 40 years old conjecture of Conway, t(n) = n for every n >= 3. For any epsilon > 0, we give an algorithm terminating in e(O((1/epsilon 2)In(1/E))) steps to decide whether t(n) <= (1+epsilon)n for all n >= 3. Using this approach, we improve the best known upper bound, t(n) <= 3/2(n - 1), due to Cairns and Nikolayevsky, to 167/117n < 1.428n.
引用
收藏
页码:226 / +
页数:3
相关论文
共 19 条
[1]  
[Anonymous], GRAPH THEORY COMBINA
[2]  
[Anonymous], 2013, Modern graph theory
[3]  
[Anonymous], 1935, JAHR DEUTSCH MATH VE
[4]  
BRASS P, 2005, RES PROBLEMS DISCRET, DOI DOI 10.1007/0-387-29929-7
[5]   Bounds for generalized thrackles [J].
Cairns, G ;
Nikolayevsky, Y .
DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 23 (02) :191-206
[6]  
CAIRNS G, 2004, CONT MATH, V342, P35
[7]   Generalized Thrackle Drawings of Non-bipartite Graphs [J].
Cairns, Grant ;
Nikolayevsky, Yury .
DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (01) :119-134
[8]  
de Fraysseix H., INT J FDN COMPUT SC, V17, P1017
[9]  
DEFRAYSSEIX H, PUBLIC IMPLEMENTATIO
[10]  
DIESTEL R, 2008, GRAPH THEORY