Galois algebras and monoidal functors between categories of representations of finite groups

被引:31
作者
Davydov, AA [1 ]
机构
[1] Macquarie Univ, Dept Math, Div Informat & Commun Sci, Sydney, NSW 2109, Australia
基金
俄罗斯基础研究基金会; 澳大利亚研究理事会;
关键词
D O I
10.1006/jabr.2001.8893
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use relations between Galois algebras and monoidal functors to describe monoidal functors between categories of representations of finite groups. We pay special attention to two kinds of these monoidal functors: monoidal functors to vector spaces and monoidal equivalences between categories of representations. The functors of the second kind induce isomorphisms of character tables. We show that pairs of groups with the same character table obtained in this way are a generalization of the construction proposed by B. Fischer (1988, Rend. Circ. Mat. Palermo (2) Suppl. 19, 71-77). (C) 2001 Academic Press.
引用
收藏
页码:273 / 301
页数:29
相关论文
共 11 条
[1]  
DAVYDOV A, FINITE GROUPS SAME C
[2]  
Day Brian, 1970, REPORTS MIDWEST CATE, V137, P1, DOI DOI 10.1007/BFB0060438
[3]  
FISCHER B., 1988, REND CIRC MAT PALERM, V19, P71
[4]  
Griess R.L., 1973, PACIFIC J MATH, V48
[5]   ON GROUPS OF CENTRAL TYPE [J].
HOWLETT, RB ;
ISAACS, IM .
MATHEMATISCHE ZEITSCHRIFT, 1982, 179 (04) :555-569
[6]   A UNIVERSAL PROPERTY OF THE CONVOLUTION MONOIDAL STRUCTURE [J].
IM, GB ;
KELLY, GM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1986, 43 (01) :75-88
[7]  
Isaacs M., 1976, PURE APPL MATH, V69
[8]  
Montgomery S., 1993, CBMS REGIONAL C SERI, V82
[9]  
MOVSHEV MV, 1993, FUNCT ANAL APPL+, V27, P240
[10]   Hopf bigalois extensions [J].
Schauenburg, P .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (12) :3797-3825