Functional Inequalities and Hamilton-Jacobi Equations in Geodesic Spaces

被引:17
作者
Balogh, Zoltan M. [1 ]
Engulatov, Alexandre [1 ]
Hunziker, Lars [2 ]
Maasalo, Outi Elina [1 ]
机构
[1] Univ Bern, Inst Math, CH-3012 Bern, Switzerland
[2] Univ Technol Sydney, Dept Math, Sydney, NSW 2007, Australia
关键词
Logarithmic-Sobolev inequalites; Talagrand inequalites; Hamilton-Jacobi semigroup; Poincare inequalities; Geodesic metric space; Metric-measure space; METRIC-MEASURE-SPACES; HOPF-LAX FORMULA; TRANSPORTATION COST; BRASCAMP; GEOMETRY; MAPS;
D O I
10.1007/s11118-011-9232-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the connection between the p-Talagrand inequality and the q-logarithmic Sololev inequality for conjugate exponents p >= 2, q <= 2 in proper geodesic metric spaces. By means of a general Hamilton-Jacobi semigroup we prove that these are equivalent, and moreover equivalent to the hypercontractivity of the Hamilton-Jacobi semigroup. Our results generalize those of Lott and Villani. They can be applied to deduce the p-Talagrand inequality in the sub-Riemannian setting of the Heisenberg group.
引用
收藏
页码:317 / 337
页数:21
相关论文
共 30 条
[1]  
Ambrosio L., 2000, SELECTED TOPICS ANAL
[2]  
Bakry D., 1985, SEM PROB 19, V1123, P177
[3]   Mass transport and variants of the logarithmic sobolev inequality [J].
Barthe, Franck ;
Kolesnikov, Alexander V. .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (04) :921-979
[4]   Hypercontractivity of Hamilton-Jacobi equations [J].
Bobkov, SG ;
Gentil, I ;
Ledoux, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :669-696
[5]   Exponential integrability and transportation cost related to logarithmic sobolev inequalities [J].
Bobkov, SG ;
Götze, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (01) :1-28
[6]   From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities [J].
Bobkov, SG ;
Ledoux, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) :1028-1052
[7]   On quadratic transportation cost inequalities [J].
Cattiaux, Patrick ;
Guillin, Arnaud .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (04) :342-361
[8]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[9]   A Riemannian interpolation inequality a la Borell, Brascamp and Lieb [J].
Cordero-Erausquin, D ;
McCann, RJ ;
Schmuckenschläger, M .
INVENTIONES MATHEMATICAE, 2001, 146 (02) :219-257
[10]   Metric Hopf-Lax formula with semicontinuous data [J].
Dragoni, Federica .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (04) :713-729