LOCUST-GPU predictions of fast-ion transport and power loads dueto ELM-control coils in ITER

被引:5
作者
Ward, S. H. [1 ,2 ,3 ]
Akers, R. [2 ]
Li, L. [4 ]
Liu, Y. Q. [5 ]
Loarte, A. [3 ]
Pinches, S. D. [3 ]
Polevoi, A. R. [3 ]
Vann, R. G. L. [1 ]
Van Zeeland, M. A. [5 ]
机构
[1] Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England
[2] Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England
[3] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-90046 St Paul Les Durance, France
[4] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
[5] Gen Atom, POB 85608, San Diego, CA 92186 USA
基金
英国工程与自然科学研究理事会;
关键词
tokamak; ITER; 3D fields; RMP; LOCUST; fusion; energetic particles; RESISTIVE WALL MODES; FEEDBACK STABILIZATION; DESIGN; TOKAMAKS;
D O I
10.1088/1741-4326/ac904f
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Lorentz-orbit code for use in stellarators and tokamaks (LOCUST)-graphics processing unit has been applied to study the fast-ion transport and loss caused by resonant magnetic perturbations in the high-performance Q = 10 ITER baseline scenario. The unique computational efficiency of the code is exploited to calculate the impact of the application of the ITER edge-localised modes (ELM)-control-coil system on neutral beam heating efficiency, as well as producing detailed predictions of the resulting plasma-facing component power loads, for a variety of operational parameters-the applied fundamental toroidal mode number n (0), mode spectrum and absolute toroidal phase of the imposed perturbation. The feasibility of continually rotating the perturbations is assessed and shown to be effective at reducing the time-averaged power loads. Through careful adjustment of the relative phase of the applied perturbation in the three rows of coils, peak power loads are found to correlate with reductions in neutral beam injection (NBI) heating efficiency for n (0) = 3 fields. Adjusting the phase this way can increase total NBI system efficiency by approximately 2%-3% and reduce peak power loads by up to 0.43 MW m(-2). From the point of view of fast-ion confinement, n (0) = 3 ELM control fields are preferred overall to n (0) = 4 fields. In addition, the implementation of 3D magnetic fields in LOCUST is also verified by comparison with the SPIRAL code for a DIII-D discharge with ITER-similar shaping and n (0) = 3 perturbation.
引用
收藏
页数:16
相关论文
共 41 条
[21]   Feedback stabilization of nonaxisymmetric resistive wall modes in tokamaks. I. Electromagnetic model [J].
Liu, YQ ;
Bondeson, A ;
Fransson, CM ;
Lennartson, B ;
Breitholtz, C .
PHYSICS OF PLASMAS, 2000, 7 (09) :3681-3690
[22]   Modelling of plasma response to resonant magnetic perturbation fields in MAST and ITER [J].
Liu, Yueqiang ;
Kirk, A. ;
Gribov, Y. ;
Gryaznevich, M. P. ;
Hender, T. C. ;
Nardon, E. .
NUCLEAR FUSION, 2011, 51 (08)
[23]   Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation [J].
Loarte, A. ;
Huijsmans, G. ;
Futatani, S. ;
Baylor, L. R. ;
Evans, T. E. ;
Orlov, D. M. ;
Schmitz, O. ;
Becoulet, M. ;
Cahyna, P. ;
Gribov, Y. ;
Kavin, A. ;
Naik, A. Sashala ;
Campbell, D. J. ;
Casper, T. ;
Daly, E. ;
Frerichs, H. ;
Kischner, A. ;
Laengner, R. ;
Lisgo, S. ;
Pitts, R. A. ;
Saibene, G. ;
Wingen, A. .
NUCLEAR FUSION, 2014, 54 (03)
[24]   The design of the ITER first wall panels [J].
Mitteau, R. ;
Calcagno, B. ;
Chappuis, P. ;
Eaton, R. ;
Gicquel, S. ;
Chen, J. ;
Labusov, A. ;
Martin, A. ;
Merola, M. ;
Raffray, R. ;
Ulrickson, M. ;
Zacchia, F. .
FUSION ENGINEERING AND DESIGN, 2013, 88 (6-8) :568-570
[25]   Strike-point splitting induced by external magnetic perturbations: Observations on JET and MAST and associated modelling [J].
Nardon, E. ;
Cahyna, P. ;
Devaux, S. ;
Kirk, A. ;
Alfier, A. ;
De La Luna, E. ;
De Temmerman, G. ;
Denner, P. ;
Eich, T. ;
Gerbaud, T. ;
Harting, D. ;
Jachmich, S. ;
Koslowski, H. R. ;
Liang, Y. ;
Sun, Y. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S914-S917
[26]   Physics basis and design of the ITER plasma-facing components [J].
Pitts, R. A. ;
Carpentier, S. ;
Escourbiac, F. ;
Hirai, T. ;
Komarov, V. ;
Kukushkin, A. S. ;
Lisgo, S. ;
Loarte, A. ;
Merola, M. ;
Mitteau, R. ;
Raffray, A. R. ;
Shimada, M. ;
Stangeby, P. C. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S957-S964
[27]   Status and physics basis of the ITER divertor [J].
Pitts, R. A. ;
Kukushkin, A. ;
Loarte, A. ;
Martin, A. ;
Merola, M. ;
Kessel, C. E. ;
Komarov, V. ;
Shimada, M. .
PHYSICA SCRIPTA, 2009, T138
[28]   Optimizing beam-ion confinement in ITER by adjusting the toroidal phase of the 3D magnetic fields applied for ELM control [J].
Sanchis, L. ;
Garcia-Munoz, M. ;
Viezzer, E. ;
Loarte, A. ;
Li, L. ;
Liu, Y. Q. ;
Snicker, A. ;
Chen, L. ;
Zonca, F. ;
Pinches, S. D. ;
Zarzoso, D. .
NUCLEAR FUSION, 2021, 61 (04)
[29]   Characterisation of the fast-ion edge resonant transport layer induced by 3D perturbative fields in the ASDEX Upgrade tokamak through full orbit simulations [J].
Sanchis, L. ;
Garcia-Munoz, M. ;
Snicker, A. ;
Ryan, D. A. ;
Zarzoso, D. ;
Chen, L. ;
Galdon-Quiroga, J. ;
Nocente, M. ;
Rivero-Rodriguez, J. F. ;
Rodriguez-Ramos, M. ;
Suttrop, W. ;
Van Zeeland, M. A. ;
Viezzer, E. ;
Willensdorfer, M. ;
Zonca, F. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (01)
[30]  
Sanchis L, 2021, COMMUNICATION