Genetic Multiobjective Optimisation with Elite Insertion for EEG Feature Selection

被引:0
|
作者
Ferariu, Lavinia [1 ]
Cimpanu, Corina [1 ]
机构
[1] Gheorghe Asachi Tech Univ Iasi, Fac Automat Control & Comp Engn, Iasi, Romania
来源
2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019) | 2019年
关键词
multi-objective optimization; genetic algorithms; classification; EEG; feature selection; ALGORITHM; DECOMPOSITION;
D O I
10.1109/iccp48234.2019.8959604
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Embedded Feature Selection (FS) ensures the selection of few, relevant features, by directly re -designing the classifier for subsets of features. Naturally, this problem is formulated as a multi -objective optimization (MOO) addressing to the accuracy of the classifier and the parsimony of the feature vector. In MOOs, common ranking techniques use dominance analysis for providing a partial sorting of the solutions. Unfortunately, dominance analysis can also promote solutions less useful for the application. In order to gradually guide the search towards a user -preferred area set around the middle of the best fronts, this paper proposes an adaptive ranking algorithm with insertion of elites (ARE), which could be integrated in any MOO genetic algorithm. ARE incorporates two new procedures proposed for labeling the preferred solutions and for inserting elites in the less populated areas, whenever a biased exploration is detected. The experimental investigations illustrate that GA with ARE offers better results than NSGAII, both for electroencephalogram (EEG) feature selection problem (which likely involves weakly conflicting objectives) and MOOs with strongly conflicting objectives.
引用
收藏
页码:405 / 410
页数:6
相关论文
共 50 条
  • [21] Genetic algorithm for feature selection of EEG heterogeneous data
    Saibene, Aurora
    Gasparini, Francesca
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 217
  • [22] Parallel Multiobjective Feature Selection for Binary Classificatio
    Deniz, Ayca
    Kiziloz, Hakan Ezgi
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2020, : 141 - 145
  • [23] EEG feature selection method based on decision tree
    Duan, Lijuan
    Ge, Hui
    Ma, Wei
    Miao, Jun
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2015, 26 : S1019 - S1025
  • [24] Genetic feature selection for gait recognition
    Tafazzoli, Faezeh
    Bebis, George
    Louis, Sushil
    Hussain, Muhammad
    JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (01)
  • [25] Multiobjective Differential Evolution for Feature Selection in Classification
    Wang, Peng
    Xue, Bing
    Liang, Jing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4579 - 4593
  • [26] An Entropy Driven Multiobjective Particle Swarm Optimization Algorithm for Feature Selection
    Luo, Juanjuan
    Zhou, Dongqing
    Jiang, Lingling
    Ma, Huadong
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 768 - 775
  • [27] Balancing Different Optimization Difficulty Between Objectives in Multiobjective Feature Selection
    Song, Zhenshou
    Wang, Handing
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (06) : 1824 - 1837
  • [28] A feature selection method with feature ranking using genetic programming
    Liu, Guopeng
    Ma, Jianbin
    Hu, Tongle
    Gao, Xiaoying
    CONNECTION SCIENCE, 2022, 34 (01) : 1146 - 1168
  • [29] Benefiting From Single-Objective Feature Selection to Multiobjective Feature Selection: A Multiform Approach
    Jiao, Ruwang
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (12) : 7773 - 7786
  • [30] A Multiform Optimization Framework for Multiobjective Feature Selection in Classification
    Liang, Jing
    Zhang, Yuyang
    Qu, Boyang
    Chen, Ke
    Yu, Kunjie
    Yue, Caitong
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 1024 - 1038