Low-bias negative differential resistance in graphene nanoribbon superlattices

被引:68
作者
Ferreira, Gerson J. [1 ,2 ,3 ]
Leuenberger, Michael N. [2 ,3 ]
Loss, Daniel [4 ]
Carlos Egues, J. [1 ,4 ]
机构
[1] Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis & Informat, BR-13560970 Sao Paulo, Brazil
[2] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32826 USA
[4] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
基金
美国国家科学基金会; 巴西圣保罗研究基金会;
关键词
D O I
10.1103/PhysRevB.84.125453
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically investigate negative differential resistance (NDR) for ballistic transport in semiconducting armchair graphene nanoribbon (aGNR) superlattices (5 to 20 barriers) at low bias voltages V-SD < 500 mV. We combine the graphene Dirac Hamiltonian with the Landauer-Buttiker formalism to calculate the current I-SD through the system. We find three distinct transport regimes in which NDR occurs: (i) a "classical" regime for wide layers, through which the transport across band gaps is strongly suppressed, leading to alternating regions of nearly unity and zero transmission probabilities as a function of V-SD due to crossing of band gaps from different layers; (ii) a quantum regime dominated by superlattice miniband conduction, with current suppression arising from the misalignment of miniband states with increasing V-SD; and (iii) a Wannier-Stark ladder regime with current peaks occurring at the crossings of Wannier-Stark rungs from distinct ladders. We observe NDR at voltage biases as low as 10 mV with a high current density, making the aGNR superlattices attractive for device applications.
引用
收藏
页数:5
相关论文
共 46 条
[1]   Conductance of a disordered graphene superlattice [J].
Abedpour, N. ;
Esmailpour, Ayoub ;
Asgari, Reza ;
Tabar, M. Reza Rahimi .
PHYSICAL REVIEW B, 2009, 79 (16)
[2]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[3]   Klein paradox and resonant tunneling in a graphene superlattice [J].
Bai, Chunxu ;
Zhang, Xiangdong .
PHYSICAL REVIEW B, 2007, 76 (07)
[4]   Extra Dirac points in the energy spectrum for superlattices on single-layer graphene [J].
Barbier, M. ;
Vasilopoulos, P. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2010, 81 (07)
[5]   Effects of Metallic Contacts on Electron Transport through Graphene [J].
Barraza-Lopez, Salvador ;
Vanevic, Mihajlo ;
Kindermann, Markus ;
Chou, M. Y. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[6]   Shot noise in mesoscopic conductors [J].
Blanter, YM ;
Büttiker, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 336 (1-2) :1-166
[7]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[8]   Emerging Zero Modes for Graphene in a Periodic Potential [J].
Brey, L. ;
Fertig, H. A. .
PHYSICAL REVIEW LETTERS, 2009, 103 (04)
[9]   Transport in superlattices on single-layer graphene [J].
Burset, P. ;
Yeyati, A. Levy ;
Brey, L. ;
Fertig, H. A. .
PHYSICAL REVIEW B, 2011, 83 (19)
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162