Composite Films of CsPbBr3 Perovskite Nanocrystals in a Hydrophobic Fluoropolymer for Temperature Imaging in Digital Microfluidics

被引:29
作者
Lu, Zhangdi [2 ]
Li, Yanxiu [1 ]
Qu, Wenting [2 ]
Rogach, Andrey L. [1 ]
Nagl, Stefan [2 ]
机构
[1] City Univ Hong Kong, Dept Mat Sci & Engn, Ctr Funct Photon CFP, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China
关键词
CsPbBr3 perovskite nanocrystals; temperature imaging; digital microfluidics; optical thin-film sensors; fluoropolymers; PEROVSKITE QUANTUM DOTS; HALIDE PEROVSKITES; SOLAR-CELLS; LUMINESCENT; STABILITY; THERMOMETER; EMISSION; EXCHANGE; CSPBX3; LAYER;
D O I
10.1021/acsami.0c02128
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A composite film material that combines CsPbBr3 perovskite nanocrystals with a Hyflon AD 60 fluoropolymer was developed and utilized for high-resolution optical temperature imaging. It exhibited bright luminescence and, most importantly, long-term stability in an aqueous medium. CsPbBr3 nanocrystal-Hyflon films immersed in aqueous solutions showed stable luminescence over at least 4 months and exhibited a fully reversible pronounced temperature sensitivity of 1.2% K-1 between 20 and 80 degrees C. They were incorporated into a digital microfluidic (electrowetting on dielectric) platform and were used for spatially resolved temperature measurements during droplet movements. Thermal mapping with a CsPbBr3 nanocrystal-Hyflon sensing layer in a room temperature environment (22.0 degrees C) revealed an increase in local temperatures of up to 40.2 degrees C upon voltage-driven droplet manipulations in a digital microfluidic system, corresponding to a local temperature change of up to 18.2 degrees C.
引用
收藏
页码:19805 / 19812
页数:8
相关论文
共 56 条
[1]   Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals [J].
Akkerman, Quinten A. ;
Raino, Gabriele ;
Kovalenko, Maksym V. ;
Manna, Liberato .
NATURE MATERIALS, 2018, 17 (05) :394-405
[2]   High performance perfluoropolymer films and membranes [J].
Arcella, V ;
Ghielmi, A ;
Tommasi, G .
ADVANCED MEMBRANE TECHNOLOGY, 2003, 984 :226-244
[3]   Cellular bias on the microscale: probing the effects of digital microfluidic actuation on mammalian cell health, fitness and phenotype [J].
Au, Sam H. ;
Fobel, Ryan ;
Desai, Salil P. ;
Voldman, Joel ;
Wheeler, Aaron R. .
INTEGRATIVE BIOLOGY, 2013, 5 (08) :1014-1025
[4]   Electrostatic force calculation for an EWOD-actuated droplet [J].
Baird, E. ;
Young, P. ;
Mohseni, K. .
MICROFLUIDICS AND NANOFLUIDICS, 2007, 3 (06) :635-644
[5]   Improved Stability and Photodetector Performance of CsPbI3 Perovskite Quantum Dots by Ligand Exchange with Aminoethanethiol [J].
Bi, Chenghao ;
Kershaw, Stephen, V ;
Rogach, Andrey L. ;
Tian, Jianjun .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (29)
[6]   A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
ADVANCED MATERIALS, 2010, 22 (40) :4499-4504
[7]   Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices [J].
Chang, Chunyu ;
Peng, Jun ;
Zhang, Lina ;
Pang, Dai-Wen .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (41) :7771-7776
[8]   A novel strategy towards designing a CdSe quantum dot-metallohydrogel composite material [J].
Chatterjee, Sayantan ;
Maitra, Uday .
NANOSCALE, 2016, 8 (32) :14979-14985
[9]   A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film [J].
Chen, Zheng ;
Gu, Zhi-Gang ;
Fu, Wen-Qiang ;
Wang, Fei ;
Zhang, Jian .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (42) :28737-28742
[10]  
Cho H., 2012, SCIENCE