Low Pressure Chemical Vapor Deposition of Aluminum-Doped Zinc Oxide for Transparent Conducting Electrodes

被引:49
作者
Kim, Woo-Hee [1 ,2 ]
Maeng, W. J. [3 ]
Kim, Min-Kyu [1 ]
Kim, Hyungjun [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea
[2] POSTECH, Dept Mat Sci & Engn, Pohang 790784, South Korea
[3] Samsung Adv Inst Technol, Display Lab, Nongseo Dong 446712, Yongin, South Korea
关键词
LIGHT-EMITTING DEVICES; ZNO THIN-FILMS; STRUCTURAL-PROPERTIES; ROOM-TEMPERATURE; SPRAY-PYROLYSIS; WORK FUNCTION; SOLAR-CELLS; FABRICATION; TRANSISTOR; SILICON;
D O I
10.1149/1.3599055
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We carried out comprehensive studies on structural, optical, and electrical properties of aluminum-doped zinc oxide (AZO) films deposited by low pressure chemical vapor deposition (LP-CVD). The growth rates of LP-CVD AZO films increased slightly with Al doping. In addition, the resistivity was strongly dependent on the carrier electron concentration, also correlated with optical band gap and work function. All the AZO films exhibited high optical transmittance of >80% in the visible range of 400-700 nm and high work function of >4.6 eV regardless of the Al content. For the comparative studies on the electrical properties as gate electrodes, metal-oxide-semiconductor (MOS) capacitors were prepared by LP-CVD AZO and sputtered ITO as gates. The AZO gate showed higher dielectric constant (k = 8.8), lower interface state (D(it) = 1.5 x 10(11) cm(-2) eV(-1)), effective oxide charge (Q(eff) = 4.8 x 10(11)), and leakage current density (2.3 x 10(-8) A/cm(2) at -1 MV/cm) than the ITO gate (k = 8.5, D(it) = 3 x 10(11) cm(-2) eV(-1), Q(eff) = 1.4 x 10(12) cm(-2) and leakage current density 5.7 x 10(-8) A/cm(2) at -1 MV/cm, respectively). (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3599055] All rights reserved.
引用
收藏
页码:D495 / D499
页数:5
相关论文
共 33 条
[1]   ELECTRICAL, OPTICAL AND ANNEALING CHARACTERISTICS OF ZNO-AL FILMS PREPARED BY SPRAY PYROLYSIS [J].
AKTARUZZAMAN, AF ;
SHARMA, GL ;
MALHOTRA, LK .
THIN SOLID FILMS, 1991, 198 (1-2) :67-74
[2]   ANOMALOUS OPTICAL ABSORPTION LIMIT IN INSB [J].
BURSTEIN, E .
PHYSICAL REVIEW, 1954, 93 (03) :632-633
[3]   The effects of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method [J].
Caglar, Mujdat ;
Ilican, Saliha ;
Caglar, Yasemin ;
Yakuphanoglu, Fahrettin .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2008, 19 (8-9) :704-708
[4]   Electron energetics at surfaces and interfaces: Concepts and experiments [J].
Cahen, D ;
Kahn, A .
ADVANCED MATERIALS, 2003, 15 (04) :271-277
[5]   Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells [J].
Fay, Sylvie ;
Steinhauser, Jerome ;
Nicolay, Sylvain ;
Ballif, Christophe .
THIN SOLID FILMS, 2010, 518 (11) :2961-2966
[6]   Fully transparent ZnO thin-film transistor produced at room temperature [J].
Fortunato, EMC ;
Barquinha, PMC ;
Pimentel, ACMBG ;
Gonçalves, AMF ;
Marques, AJS ;
Pereira, LMN ;
Martins, RFP .
ADVANCED MATERIALS, 2005, 17 (05) :590-+
[7]   Towards see-through displays:: Fully transparent thin-film transistors driving transparent organic light-emitting diodes [J].
Görrn, P ;
Sander, M ;
Meyer, J ;
Kröger, M ;
Becker, E ;
Johannes, HH ;
Kowalsky, W ;
Riedl, T .
ADVANCED MATERIALS, 2006, 18 (06) :738-+
[8]   Transparent conducting ZnO thin films prepared by XeCl excimer laser ablation [J].
Hiramatsu, M ;
Imaeda, K ;
Horio, N ;
Nawata, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1998, 16 (02) :669-673
[9]   TEXTURED ALUMINUM-DOPED ZINC-OXIDE THIN-FILMS FROM ATMOSPHERIC-PRESSURE CHEMICAL-VAPOR DEPOSITION [J].
HU, JH ;
GORDON, RG .
JOURNAL OF APPLIED PHYSICS, 1992, 71 (02) :880-890
[10]   Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices [J].
Jiang, X ;
Wong, FL ;
Fung, MK ;
Lee, ST .
APPLIED PHYSICS LETTERS, 2003, 83 (09) :1875-1877