Classification and existence of positive entire k-convex radial solutions for generalized nonlinear k-Hessian system

被引:8
|
作者
Zhang Li-hong [1 ]
Yang Ze-dong [1 ]
Wang Guo-tao [1 ]
Rashidi, Mohammad M. [2 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
[2] Tongji Univ, Shanghai Automot Wind Tunnel Ctr, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
k-Hessian system; entire blow-up; classification of radial solutions; monotone iterative method; BLOW-UP SOLUTIONS; BOUNDED SOLUTIONS; EQUATIONS; NONEXISTENCE; SUFFICIENT;
D O I
10.1007/s11766-021-4363-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following generalized nonlinear k-Hessian system {G(S-k(1/k)(lambda(D(2)z(1)))) S-1/kk(lambda(D(2)z(1))) = phi(vertical bar x vertical bar, z(1), z(2)), x epsilon R-N, G(S-k(1/k)(lambda(D(2)z(2)))) S-1/kk(lambda(D(2)z(2))) = psi(vertical bar x vertical bar, z(1), z(2)), x epsilon R-N,R- where G is a nonlinear operator and S-k (lambda(D(2)z)) stands for the k-Hessian operator. We first are interested in the classification of positive entire k-convex radial solutions for the k-Hessian system if phi(vertical bar x vertical bar, z(1), z(2)) = b(vertical bar x vertical bar)phi(z(1), z(2)) and psi(vertical bar x vertical bar, z(1), z(2)) = h(vertical bar x vertical bar)psi(z(1)). Moreover, with the help of the monotone iterative method, some new existence results on the positive entire k-convex radial solutions of the k-Hessian system with the special non-linearities psi,phi are given, which improve and extend many previous works.
引用
收藏
页码:564 / 582
页数:19
相关论文
共 50 条
  • [1] Classification and existence of positive entire k-convex radial solutions for generalized nonlinear k-Hessian system
    ZHANG Li-hong
    YANG Ze-dong
    WANG Guo-tao
    Mohammad M.Rashidi
    AppliedMathematics:AJournalofChineseUniversities, 2021, 36 (04) : 564 - 582
  • [2] Classification and existence of positive entire k-convex radial solutions for generalized nonlinear k-Hessian system
    Li-hong Zhang
    Ze-dong Yang
    Guo-tao Wang
    Mohammad M. Rashidi
    Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 564 - 582
  • [3] Existence of k-Convex Solutions for the k-Hessian Equation
    Bai, Zhanbing
    Yang, Zedong
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [4] Entire positive k-convex solutions to k-Hessian type equations and systems
    Bai, Shuangshuang
    Zhang, Xuemei
    Feng, Meiqiang
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (02): : 481 - 491
  • [5] Existence of k-Convex Solutions for the k-Hessian Equation
    Zhanbing Bai
    Zedong Yang
    Mediterranean Journal of Mathematics, 2023, 20
  • [6] The existence and multiplicity of k-convex solutions for a coupled k-Hessian system
    Gao, Chenghua
    He, Xingyue
    Wang, Jingjing
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2615 - 2628
  • [7] THE EXISTENCE AND MULTIPLICITY OF k-CONVEX SOLUTIONS FOR A COUPLED k-HESSIAN SYSTEM
    高承华
    何兴玥
    王晶晶
    Acta Mathematica Scientia, 2023, 43 (06) : 2615 - 2628
  • [8] The existence and multiplicity of k-convex solutions for a coupled k-Hessian system
    Chenghua Gao
    Xingyue He
    Jingjing Wang
    Acta Mathematica Scientia, 2023, 43 : 2615 - 2628
  • [9] Existence and nonexistence of entire k-convex radial solutions to Hessian type system
    Cui, Jixian
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [10] Existence and nonexistence of entire k-convex radial solutions to Hessian type system
    Jixian Cui
    Advances in Difference Equations, 2021