Decomposing Generalized Bent and Hyperbent Functions

被引:22
作者
Martinsen, Thor [1 ]
Meidl, Wilfried [2 ]
Mesnager, Sihem [3 ,4 ,5 ]
Stanica, Pantelimon [1 ]
机构
[1] Naval Postgrad Sch, Dept Appl Math, Monterey, CA 93943 USA
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[3] Univ Paris 08, Dept Math, F-93526 St Denis, France
[4] Univ Paris 08, CNRS, LAGA UMR 7539, Sorbonne Paris Cite, F-93430 Villetaneuse, France
[5] Telecom ParisTech, F-75013 Paris, France
基金
奥地利科学基金会;
关键词
Boolean functions; Walsh-Hadamard transforms; bent functions; semibent functions; hyperbent functions; generalized bent functions; cyclotomic fields; CONSTRUCTION;
D O I
10.1109/TIT.2017.2754498
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce generalized hyperbent functions from F-2n to Z(2k), and investigate decompositions of generalized (hyper) bent functions. We show that generalized (hyper) bent functions f from F-2n to Z(2k) consist of components which are generalized (hyper) bent functions from F-2n to Z(2k)' for some k' < k. For even n, most notably we show that the g-hyperbentness of f is equivalent to the hyperbentness of the components of f with some conditions on the Walsh-Hadamard coefficients. For odd n, we show that the Boolean functions associated to a generalized bent function form an affine space of semibent functions. This complements a recent result for even n, where the associated Boolean functions are bent.
引用
收藏
页码:7804 / 7812
页数:9
相关论文
共 23 条
[1]   Attacks Against Filter Generators Exploiting Monomial Mappings [J].
Canteaut, Anne ;
Rotella, Yann .
FAST SOFTWARE ENCRYPTION (FSE 2016), 2016, 9783 :78-98
[2]   Hyper-bent functions and cyclic codes [J].
Carlet, C ;
Gaborit, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (03) :466-482
[3]   Z2k-Linear codes [J].
Carlet, C .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1543-1547
[4]   Four decades of research on bent functions [J].
Carlet, Claude ;
Mesnager, Sihem .
DESIGNS CODES AND CRYPTOGRAPHY, 2016, 78 (01) :5-50
[5]   Hyperbent functions, Kloosterman sums, and Dickson polynomials [J].
Charpin, Pascale ;
Gong, Guang .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) :4230-4238
[6]  
Cusick TW, 2017, CRYPTOGRAPHIC BOOLEA
[7]   A Note on Generalized Bent Criteria for Boolean Functions [J].
Gangopadhyay, Sugata ;
Pasalic, Enes ;
Stanica, Pantelimon .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (05) :3233-3236
[8]   Generalized Bent Functions - Some General Construction Methods and Related Necessary and Sufficient Conditions [J].
Hodzic, S. ;
Pasalic, E. .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2015, 7 (04) :469-483
[10]   Partial spread and vectorial generalized bent functions [J].
Martinsen, Thor ;
Meidl, Wilfried ;
Stanica, Pantelimon .
DESIGNS CODES AND CRYPTOGRAPHY, 2017, 85 (01) :1-13