Direct transformation of a resist pattern into a graphene field effect transistor through interfacial graphitization of liquid gallium

被引:7
作者
Fujita, Jun-ichi [1 ,2 ]
Miyazawa, Yosuke [1 ,2 ]
Ueki, Ryuichi [1 ,2 ]
Sasaki, Mio [2 ]
Saito, Takeshi [3 ]
机构
[1] Japan Sci & Technol Agcy, PRESTO JST, Kawaguchi, Saitama 3320012, Japan
[2] Univ Tsukuba, Inst Appl Phys, Tsukuba, Ibaraki 3058573, Japan
[3] AIST, Nanotube Res Ctr, Tsukuba, Ibaraki 3058565, Japan
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2010年 / 28卷 / 06期
关键词
ELECTRONIC-PROPERTIES; GRAPHITE; CARBON; COPPER; STATE; FILMS; EDGE;
D O I
10.1116/1.3511511
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors found that an extremely thin resist pattern on a silicon dioxide can be directly transformed into a graphene channel through interfacial graphitization of liquid gallium. These patterned graphene field effect transistors show p-type field effect conductance characteristics and a maximum conductance modulation of 100% against an applied gate voltage range from -50 to +50 V at room temperature, which is almost identical to the on/off ratio of 2. These conductance modulation ratios improved with decreasing the initial resist thickness below 2 nm; however, the absolute value of the channel conductance also deteriorated with decreasing the resist thickness, suggesting that electron scattering at the domain boundary dominates the channel conductance. (c) 2010 American Vacuum Society. [DOI: 10.1116/1.3511511]
引用
收藏
页码:C6D1 / C6D4
页数:4
相关论文
共 26 条
[1]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Controlling the band gap in zigzag graphene nanoribbons with an electric field induced by a polar molecule [J].
Dalosto, Sergio D. ;
Levine, Zachary H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (22) :8196-8199
[5]   Mapping the Dirac point in gated bilayer graphene [J].
Deshpande, A. ;
Bao, W. ;
Zhao, Z. ;
Lau, C. N. ;
LeRoy, B. J. .
APPLIED PHYSICS LETTERS, 2009, 95 (24)
[6]   Inducing graphite tube transformation with liquid gallium and flash discharge [J].
Fujita, J ;
Ichihashi, T ;
Nakazawa, S ;
Okada, S ;
Ishida, M ;
Ochiai, Y ;
Kaito, T ;
Matsui, S .
APPLIED PHYSICS LETTERS, 2006, 88 (08)
[7]   Fabrication of Large-Area Graphene Using Liquid Gallium and Its Electrical Properties [J].
Fujita, Jun-ichi ;
Miyazawa, Yosuke ;
Ueki, Ryuichi ;
Sasaki, Mio ;
Saito, Takeshi .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (06) :06GC011-06GC015
[8]   Graphitization at interface between amorphous carbon and liquid gallium for fabricating large area graphene sheets [J].
Fujita, Jun-ichi ;
Ueki, Ryuuichi ;
Miyazawa, Yousuke ;
Ichihashi, Toshinari .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (06) :3063-3066
[9]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923
[10]   Epitaxial Growth Processes of Graphene on Silicon Substrates [J].
Fukidome, Hirokazu ;
Miyamoto, Yu ;
Handa, Hiroyuki ;
Saito, Eiji ;
Suemitsu, Maki .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (01)