Order conditions for linearly implicit fractional step Runge-Kutta methods

被引:2
作者
Bujanda, B. [1 ]
Jorge, J. C. [1 ]
机构
[1] Univ Publ Navarra, Dept Matemat & Informat, Pamplona, Spain
关键词
fractional step methods; order conditions; linearly implicit methods;
D O I
10.1093/imanum/drm004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the consistency of a variant of fractional step Runge-Kutta methods. These methods are designed to integrate efficiently semi-linear multidimensional parabolic problems by means of linearly implicit time integration processes. Such time discretization procedures are also related to a splitting of the space differential operator (or the spatial discretization of it) as a sum of 'simpler' linear differential operators and a nonlinear term.
引用
收藏
页码:781 / 797
页数:17
相关论文
共 50 条
  • [31] On explicit two-derivative two-step Runge-Kutta methods
    Turaci, Mukaddes Okten
    Ozis, Turgut
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05) : 6920 - 6954
  • [32] IMPLICIT-EXPLICIT RELAXATION RUNGE-KUTTA METHODS: CONSTRUCTION, ANALYSIS AND APPLICATIONS TO PDES
    Li, Dongfang
    Li, Xiaoxi
    Zhang, Zhimin
    MATHEMATICS OF COMPUTATION, 2023, 92 (339) : 117 - 146
  • [33] Derivation of Three-Derivative Two-Step Runge-Kutta Methods
    Qin, Xueyu
    Yu, Jian
    Yan, Chao
    MATHEMATICS, 2024, 12 (05)
  • [34] Runge-Kutta methods: Some historical notes
    Butcher, JC
    Wanner, G
    APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) : 113 - 151
  • [35] Cost-reduction implicit exponential Runge-Kutta methods for highly oscillatory systems
    Hu, Xianfa
    Wang, Wansheng
    Wang, Bin
    Fang, Yonglei
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 62 (09) : 2191 - 2221
  • [36] Runge-Kutta Methods for Ordinary Differential Equations
    Butcher, J. C.
    NUMERICAL ANALYSIS AND OPTIMIZATION, NAO-III, 2015, 134 : 37 - 58
  • [37] Tamed Runge-Kutta methods for SDEs with super-linearly growing drift and diffusion coefficients
    Gan, Siqing
    He, Youzi
    Wang, Xiaojie
    APPLIED NUMERICAL MATHEMATICS, 2020, 152 : 379 - 402
  • [38] Construction of Runge-Kutta methods of Crouch-Grossman type of high order
    Jackiewicz, Z
    Marthinsen, A
    Owren, B
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 13 (04) : 405 - 415
  • [39] ORDER CONDITIONS FOR CANONICAL RUNGE-KUTTA-NYSTROM METHODS
    CALVO, MP
    SANZSERNA, JM
    BIT, 1992, 32 (01): : 131 - 142
  • [40] Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection
    D'Ambrosio, R.
    Esposito, E.
    Paternoster, B.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7468 - 7480