Order conditions for linearly implicit fractional step Runge-Kutta methods

被引:2
作者
Bujanda, B. [1 ]
Jorge, J. C. [1 ]
机构
[1] Univ Publ Navarra, Dept Matemat & Informat, Pamplona, Spain
关键词
fractional step methods; order conditions; linearly implicit methods;
D O I
10.1093/imanum/drm004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the consistency of a variant of fractional step Runge-Kutta methods. These methods are designed to integrate efficiently semi-linear multidimensional parabolic problems by means of linearly implicit time integration processes. Such time discretization procedures are also related to a splitting of the space differential operator (or the spatial discretization of it) as a sum of 'simpler' linear differential operators and a nonlinear term.
引用
收藏
页码:781 / 797
页数:17
相关论文
共 50 条
  • [21] Search for highly stable two-step Runge-Kutta methods
    D'Ambrosio, R.
    Izzo, G.
    Jackiewicz, Z.
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) : 1361 - 1379
  • [22] Two-step Runge-Kutta Methods with Quadratic Stability Functions
    Conte, D.
    D'Ambrosio, R.
    Jackiewicz, Z.
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 44 (02) : 191 - 218
  • [23] Two-step Runge-Kutta methods for stochastic differential equations
    D'Ambrosio, Raffaele
    Scalone, Carmela
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 403
  • [24] A new class of second order linearly implicit fractional. step methods
    Portero, L.
    Jorge, J. C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 603 - 615
  • [25] On the Consistency Order of Runge-Kutta Methods Combined with Active Richardson Extrapolation
    Bayleyegn, Teshome
    Farago, Istvan
    Havasi, Agnes
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 101 - 108
  • [26] Construction of Two-Derivative Runge-Kutta Methods of Order Six
    Kalogiratou, Zacharoula
    Monovasilis, Theodoros
    ALGORITHMS, 2023, 16 (12)
  • [27] SECOND ORDER RUNGE-KUTTA METHODS FOR ITO STOCHASTIC DIFFERENTIAL EQUATIONS
    Roessler, Andreas
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1713 - 1738
  • [28] The number of conditions for a Runge-Kutta method to have effective order p
    Butcher, JC
    SanzSerna, JM
    APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) : 103 - 111
  • [29] Improved starting methods for two-step Runge-Kutta methods of stage-order p-3
    Verner, JH
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (3-4) : 388 - 396
  • [30] Continuous two-step Runge-Kutta methods for ordinary differential equations
    D'Ambrosio, Raffaele
    Jackiewicz, Zdzislaw
    NUMERICAL ALGORITHMS, 2010, 54 (02) : 169 - 193