New advances in extracting and learning from protein-protein interactions within unstructured biomedical text data

被引:1
作者
Caufield, J. Harry [1 ,2 ]
Ping, Peipei [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, NIH, BD2K Ctr Excellence Biomed Comp, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Physiol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Med Cardiol, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Bioinformat, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Scalable Analyt Inst ScAi, Los Angeles, CA 90095 USA
关键词
NEURAL-NETWORKS; CURATION;
D O I
10.1042/ETLS20190003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-protein interactions, or PPIs, constitute a basic unit of our understanding of protein function. Though substantial effort has been made to organize PPI knowledge into structured databases, maintenance of these resources requires careful manual curation. Even then, many PPIs remain uncurated within unstructured text data. Extracting PPIs from experimental research supports assembly of PPI networks and highlights relationships crucial to elucidating protein functions. Isolating specific protein-protein relationships from numerous documents is technically demanding by both manual and automated means. Recent advances in the design of these methods have leveraged emerging computational developments and have demonstrated impressive results on test datasets. In this review, we discuss recent developments in PPI extraction from unstructured biomedical text. We explore the historical context of these developments, recent strategies for integrating and comparing PPI data, and their application to advancing the understanding of protein function. Finally, we describe the challenges facing the application of PPI mining to the text concerning protein families, using the multifunctional 14-3-3 protein family as an example.
引用
收藏
页码:357 / 369
页数:13
相关论文
共 82 条
[1]  
Alberich R., 2019, 190207107 ARXIV
[2]  
[Anonymous], 2017, P BIOCREATIVE 5 5 CH
[3]   IMMAN: an R/Bioconductor package for Interolog protein network reconstruction, mapping and mining analysis [J].
Ashtiani, Minoo ;
Nickchi, Payman ;
Jahangiri-Tazehkand, Soheil ;
Safari, Abdollah ;
Mirzaie, Mehdi ;
Jafari, Mohieddin .
BMC BIOINFORMATICS, 2019, 20
[4]   14-3-3: A Case Study in PPI Modulation [J].
Ballone, Alice ;
Centorrino, Federica ;
Ottmann, Christian .
MOLECULES, 2018, 23 (06)
[5]  
Blaschke C, 1999, Proc Int Conf Intell Syst Mol Biol, P60
[6]   Comparative experiments on learning information extractors for proteins and their interactions [J].
Bunescu, R ;
Ge, RF ;
Kate, RJ ;
Marcotte, EM ;
Mooney, RJ ;
Ramani, AK ;
Wong, YW .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2005, 33 (02) :139-155
[7]   Building deep learning models for evidence classification from the open access biomedical literature [J].
Burns, Gully A. ;
Li, Xiangci ;
Peng, Nanyun .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2019,
[8]   A reference set of curated biomedical data and metadata from clinical case reports [J].
Caufield, J. Harry ;
Zhou, Yijiang ;
Garlid, Anders O. ;
Setty, Shaun P. ;
Liem, David A. ;
Cao, Quan ;
Lee, Jessica M. ;
Murali, Sanjana ;
Spendlove, Sarah ;
Wang, Wei ;
Zhang, Li ;
Sun, Yizhou ;
Bui, Alex ;
Hermjakob, Henning ;
Watson, Karol E. ;
Ping, Peipei .
SCIENTIFIC DATA, 2018, 5
[9]   A Metadata Extraction Approach for Clinical Case Reports to Enable Advanced Understanding of Biomedical Concepts [J].
Caufield, John Harry ;
Liem, David A. ;
Garlid, Anders O. ;
Zhou, Yijiang ;
Watson, Karol ;
Bui, Alex A. T. ;
Wang, Wei ;
Ping, Peipei .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (139)
[10]   LocText: relation extraction of protein localizations to assist database curation [J].
Cejuela, Juan Miguel ;
Vinchurkar, Shrikant ;
Goldberg, Tatyana ;
Shankar, Madhukar Sollepura Prabhu ;
Baghudana, Ashish ;
Bojchevski, Aleksandar ;
Uhlig, Carsten ;
Ofner, Andre ;
Raharja-Liu, Pandu ;
Jensen, Lars Juhl ;
Rost, Burkhard .
BMC BIOINFORMATICS, 2018, 19