Multi-objective design optimization of a fast spectrum nuclear experiment facility using artificial intelligence

被引:4
作者
Pevey, John L. [1 ]
Salyer, Cameron [1 ]
Chvala, Ondrej [1 ]
Sobes, Vladimir [1 ]
Hines, J. Wesley [1 ]
机构
[1] Univ Tennessee, 1412 Circle Dr, Knoxville, TN 37996 USA
关键词
Multi-objective optimization; Subcritical experiment; MCNP; Nuclear cross sections; Nuclear experiment design; Artificial intelligence; Genetic algorithm; GENETIC ALGORITHM;
D O I
10.1016/j.anucene.2021.108476
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Nuclear experimental design is often a balance between competing objectives or goals for the experiment. The Fast Neutron Source (FNS) at the University of Tennessee would be a unique platform for building targeted integral nuclear cross section measurement experiments to reduce nuclear data uncertainty on future reactor designs. In this paper we apply a genetic algorithm using non-dominated sorting, elitism, and crowding distance heuristics to explore the design space of a simplified 1D approximation of the FNS, and from this data, we present correlations in the final suite of designs which will be the basis of heuristics for more complex optimizations and geometries in the future. In this analysis, we show that a multi-objective genetic algorithm can be used to design nuclear experiments with the dual objective of spectrum matching and flux maximization. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 11 条
[1]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[2]   INITIAL MCNP6 RELEASE OVERVIEW [J].
Goorley, T. ;
James, M. ;
Booth, T. ;
Brown, F. ;
Bull, J. ;
Cox, L. J. ;
Durkee, J. ;
Elson, J. ;
Fensin, M. ;
Forster, R. A. ;
Hendricks, J. ;
Hughes, H. G. ;
Johns, R. ;
Kiedrowski, B. ;
Martz, R. ;
Mashnik, S. ;
McKinney, G. ;
Pelowitz, D. ;
Prael, R. ;
Sweezy, J. ;
Waters, L. ;
Wilcox, T. ;
Zukaitis, T. .
NUCLEAR TECHNOLOGY, 2012, 180 (03) :298-315
[3]  
Nuclear Energy Agency, 2019, COMMUNICATION
[4]   Multiobjective pressurized water reactor reload core design by nondominated genetic algorithm search [J].
Parks, GT .
NUCLEAR SCIENCE AND ENGINEERING, 1996, 124 (01) :178-187
[5]  
Peavy J., 2019, T AM NUCL SOC, V212, P1536
[6]   Basic investigations related to genetic algorithms in core designs [J].
Pereira, CMDN ;
Schirru, R ;
Martinez, AS .
ANNALS OF NUCLEAR ENERGY, 1999, 26 (03) :173-193
[7]   Genetic Algorithm Design of a Coupled Fast and Thermal Subcritical Assembly [J].
Pevey, John ;
Chvala, Ondrej ;
Davis, Sarah ;
Sobes, Vladimir ;
Hines, J. Wes .
NUCLEAR TECHNOLOGY, 2020, 206 (04) :609-619
[8]  
Santamarina A., 2012, P INT C PHYSOR, P15
[9]   Development of a "best representativity" method for experimental data analysis and an application to the critical experiments at the Toshiba NCA facility [J].
Umano, Takuya ;
Yoshioka, Kenichi ;
Obara, Toru .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2014, 51 (05) :608-625
[10]   The use of multi-objective optimization to improve the design process of nuclear power plant systems [J].
Wilding, Paul R. ;
Murray, Nathan R. ;
Memmott, Matthew J. .
ANNALS OF NUCLEAR ENERGY, 2020, 137