Radar Detection of Buried Targets in Coastal Environments

被引:0
作者
Brode, Chad M. [1 ]
Narayanan, Ram M. [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
来源
RADAR SENSOR TECHNOLOGY XXI | 2017年 / 10188卷
关键词
Cognitive radar; soil salinity; coastal environment; radar detection; buried target;
D O I
10.1117/12.2270418
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Coastal soils offer a number of challenges in electromagnetic remote sensing applications. They are highly saline owing to their constant contact with salt water resulting in high values for the real and imaginary parts of their permittivity. Due to this fact, it is desirable to model these properties and determine how they will affect the detection and location of targets buried in coastal soil environments. We examined the propagation of a plane wave with three different incidence angles on a cubic perfect electric conductor (PEC) target contained within an semi-infinite dielectric material with the same properties as the soil. This response was then compared to that of a baseline target with no dielectric surrounding it and a dielectric mimicking dry sandy soil. The results show that the signal is both highly reflected at the surface of the wet coastal soil, and significantly attenuated as it propagates through the wet soil dielectric. The results of our modeling and simulation studies over a wide range of conditions (e.g. frequency, soil salinity, burial depth, etc.) are presented and trade-offs examined in order to develop a cognitive radar system for enhancing target detection and clutter suppression.
引用
收藏
页数:8
相关论文
共 7 条
  • [1] [Anonymous], THESIS
  • [2] Balanis C., 2012, ADV ENG ELECTROMAGNE
  • [3] Behari J., 2005, MICROWAVE DIELECTRIC
  • [4] Donskoy D., 2002, J ACOUSTICAL SOC AM, V111, P27
  • [5] PASSIVE MICROWAVE REMOTE-SENSING SYSTEM FOR SOIL-MOISTURE - SOME SUPPORTING RESEARCH
    JACKSON, TJ
    SCHMUGGE, TJ
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1989, 27 (02): : 225 - 235
  • [6] McMichael I., 2010, RDERNVTR267 US ARM N
  • [7] Youn H.-S., 2010, P 2010 IEEE ANT PROP, DOI [10.1109/APS.2010.5561024(2010), DOI 10.1109/APS.2010.5561024]