F-mode ultraviolet photoacoustic remote sensing for label-free virtual H&E histopathology using a single excitation wavelength

被引:11
作者
Kedarisetti, Pradyumna [1 ]
Restall, Brendon S. [1 ]
Haven, Nathaniel J. M. [1 ]
Martell, Matthew T. [1 ]
Cikaluk, Brendyn D. [1 ]
Deschenes, Jean [2 ]
Zemp, Roger J. [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 1H9, Canada
[2] Univ Alberta, Dept Lab Med & Pathol, Edmonton, AB T6G 2B7, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
D O I
10.1364/OL.426543
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photoacoustic remote sensing (PARS) is a novel all-optical imaging modality that allows for non-contact detection of initial photoacoustic pressures. Using 266-nm excitation pulses, ultraviolet PARS (UV-PARS) has previously demonstrated imaging contrast for cell nuclei in histological samples with <400 nm resolution. In prior PARS-based imaging schemes, the signal amplitude at an interrogation point was determined by the maximum deflection from the DC scattering signal in response to a pulsed excitation. This method, however, does not take into consideration additional information encoded in the frequency domain of the recorded PARS signals. Here, we present a frequency domain technique called F-mode PARS that can be used to generate images with nuclear and cytoplasmic enhanced contrast, enabling label-free virtual hematoxylin-and-eosinlike microscopy, using only a single excitation wavelength. With F-mode processing, we have been able to demonstrate contrast-to-noise ratios of up to 38 dB between cell nuclei and surrounding cytoplasm, which represents up to a 25-dB improvement over previous implementations of UV-PARS systems. (C) 2021 Optical Society of America
引用
收藏
页码:3500 / 3503
页数:4
相关论文
共 16 条
[1]   Biophotonic technologies for assessment of breast tumor surgical margins-A review [J].
Balasundaram, Ghayathri ;
Krafft, Christoph ;
Zhang, Ruochong ;
Dev, Kapil ;
Bi, Renzhe ;
Moothanchery, Mohesh ;
Popp, Juwrgen ;
Olivo, Malini .
JOURNAL OF BIOPHOTONICS, 2021, 14 (01)
[2]  
Balch GC, 2005, AM SURGEON, V71, P22
[3]  
Bell K., 2020, SCI REP-UK, V10, P1
[4]   Scattering cross-sectional modulation in photoacoustic remote sensing microscopy [J].
Bell, Kevan ;
Hajireza, Parsin ;
Zemp, Roger .
OPTICS LETTERS, 2018, 43 (01) :146-149
[5]   Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy [J].
Bell, Kevan L. ;
Hajireza, Parsin ;
Shi, Wei ;
Zemp, Roger J. .
APPLIED OPTICS, 2017, 56 (18) :5172-5181
[6]   PHOTOACOUSTIC SIGNATURES OF PARTICULATE MATTER - OPTICAL PRODUCTION OF ACOUSTIC MONOPOLE RADIATION [J].
DIEBOLD, GJ ;
KHAN, MI ;
PARK, SM .
SCIENCE, 1990, 250 (4977) :101-104
[7]   Intraoperative Imprint Cytology and Frozen Section Pathology for Margin Assessment in Breast Conservation Surgery: A Systematic Review [J].
Esbona, Karla ;
Li, Zhanhai ;
Wilke, Lee G. .
ANNALS OF SURGICAL ONCOLOGY, 2012, 19 (10) :3236-3245
[8]   Non-interferometric photoacoustic remote sensing microscopy [J].
Hajireza, Parsin ;
Shi, Wei ;
Bell, Kevan ;
Paproski, Robert J. ;
Zemp, Roger J. .
LIGHT-SCIENCE & APPLICATIONS, 2017, 6 :e16278-e16278
[9]   Reflective objective-based ultraviolet photoacoustic remote sensing virtual histopathology [J].
Haven, Nathaniel J. M. ;
Kedarisetti, Pradyumna ;
Restall, Brendon S. ;
Zemp, Roger J. .
OPTICS LETTERS, 2020, 45 (02) :535-538
[10]   Ultraviolet photoacoustic remote sensing microscopy [J].
Haven, Nathaniel J. M. ;
Bell, Kevan L. ;
Kedarisetti, Pradyumna ;
Lewis, John D. ;
Zemp, Roger J. .
OPTICS LETTERS, 2019, 44 (14) :3586-3589