LAGRANGIANS FOR DISSIPATIVE NONLINEAR OSCILLATORS: THE METHOD OF JACOBI LAST MULTIPLIER

被引:70
作者
Nucci, M. C. [1 ]
Tamizhmani, K. M. [2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Pondicherry Univ, Dept Math, Kalapet 605014, Puducherry, India
关键词
Ordinary differential equations; Lie symmetry algebra; Lagrangian; COMPLETE SYMMETRY GROUP; LIE SYMMETRIES; DIFFERENTIAL-EQUATIONS; VARIABLE-COEFFICIENTS; DYNAMICAL-SYSTEM; OLD METHOD;
D O I
10.1142/S1402925110000696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method devised by Jacobi to derive Lagrangians of any second-order differential equation: it consists in finding a Jacobi Last Multiplier. We illustrate the easiness and the power of Jacobi's method by applying it to several equations, including a class of equations recently studied by Musielak with his own method [Z. E. Musielak, Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients J. Phys. A: Math. Theor. 41 (2008) 055205], and in particular a Lienard type nonlinear oscillator and a second-order Riccati equation. Also, we derive more than one Lagrangian for each equation.
引用
收藏
页码:167 / 178
页数:12
相关论文
共 39 条
  • [1] Ames W.F., 1968, Nonlinear Ordinary differential equations in Transport Processes
  • [2] [Anonymous], NUOVO CIMENTO B
  • [3] [Anonymous], 1886, VORLESUNGEN DYNAMIK
  • [4] [Anonymous], 1844, J REINE ANGEW MATH
  • [5] Bianchi L., 1918, Lezioni sulla teoria dei gruppi continui finiti di trasformazioni
  • [6] Solution and asymptotic/blow-up behaviour of a class of nonlinear dissipative systems
    Bluman, George
    Cheviakov, Alexei E.
    Senthilvelan, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 1199 - 1209
  • [7] Lagrangian formalism for nonlinear second-order Riccati systems:: One-dimensional integrability and two-dimensional superintegrability -: art. no. 062703
    Cariñena, JF
    Rañada, MF
    Santander, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (06)
  • [8] A quantum exactly solvable non-linear oscillator with quasi-harmonic behaviour
    Carinena, Jose F.
    Ranada, Manuel F.
    Santander, Mariano
    [J]. ANNALS OF PHYSICS, 2007, 322 (02) : 434 - 459
  • [9] Dirac P. A. M., 1933, PHYS Z SOWJETUNION, V3, P64
  • [10] EULER L, 1769, E366 I CALCALI INTEG