Integration of IR-808 Sensitized Upconversion Nanostructure and MoS2 Nanosheet for 808 nm NIR Light Triggered Phototherapy and Bioimaging

被引:93
作者
Xu, Jiating [1 ]
Gulzar, Arif [1 ]
Liu, Yuhui [1 ]
Bi, Huiting [1 ]
Gai, Shili [1 ]
Liu, Bin [1 ]
Yang, Dan [1 ]
He, Fei [1 ]
Yang, Piaoping [1 ]
机构
[1] Harbin Engn Univ, Key Lab Superlight Mat & Surface Technol, Minist Educ, Coll Mat Sci & Chem Engn, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTODYNAMIC THERAPY; VERSATILE PLATFORM; DYE SENSITIZATION; CANCER-THERAPY; NANOPARTICLES; LUMINESCENCE; PHOTON; PHOTOSENSITIZER; NANOMATERIALS; NANOPLATFORM;
D O I
10.1002/smll.201701841
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Near infrared (NIR) light triggered phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) affords superior outcome in cancer treatment. However, the reactive oxygen species (ROS) generated by NIR-excited upconversion nanostructure is limited by the feeble upconverted light which cannot activate PDT agents efficiently. Here, an IR-808 dye sensitized upconversion nanoparticle (UCNP) with a chlorin e6 (Ce6)-functionalized silica layer is developed for PDT agent. The two booster effectors (dye-sensitization and core-shell enhancement) synergistically amplify the upconversion efficiency, therefore achieving superbright visible emission under low 808 nm light excitation. The markedly amplified red light subsequently triggers the photosensitizer (Ce6) to produce large amount of ROS for efficient PDT. After the silica is endowed with positive surface, these PDT nanoparticles can be easily grafted on MoS2 nanosheet. As the optimal laser wavelength of UCNPs is consistent with that of MoS2 nanosheet for PTT, the invented nanoplatform generates both abundant ROS and local hyperthermia upon a single 808 nm laser irradiation. Both the in vitro and in vivo assays validate that the innovated nanostructure presents excellent cancer cell inhibition effectiveness by taking advantages of the synergistic PTT and PDT, simultaneously, posing trimodal (upconversion luminescence/computed tomography (CT)/magnetic resonance imaging (MRI) imaging capability.
引用
收藏
页数:13
相关论文
共 72 条
[1]   In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics [J].
Ai, Xiangzhao ;
Ho, Chris Jun Hui ;
Aw, Junxin ;
Attia, Amalina Binte Ebrahim ;
Mu, Jing ;
Wang, Yu ;
Wang, Xiaoyong ;
Wang, Yong ;
Liu, Xiaogang ;
Chen, Huabing ;
Gao, Mingyuan ;
Chen, Xiaoyuan ;
Yeow, Edwin K. L. ;
Liu, Gang ;
Olivo, Malini ;
Xing, Bengang .
NATURE COMMUNICATIONS, 2016, 7
[2]   Global cancer transitions according to the Human Development Index (2008-2030): a population-based study [J].
Bray, Freddie ;
Jemal, Ahmedin ;
Grey, Nathan ;
Ferlay, Jacques ;
Forman, David .
LANCET ONCOLOGY, 2012, 13 (08) :790-801
[3]   Current Advances in Lanthanide-Doped Upconversion Nanostructures for Detection and Bioapplication [J].
Chen, Cailing ;
Li, Chunguang ;
Shi, Zhan .
ADVANCED SCIENCE, 2016, 3 (10)
[4]   Nd3+-Sensitized Ho3+ Single-Band Red Upconversion Luminescence in Core Shell Nanoarchitecture [J].
Chen, Daqin ;
Liu, Lu ;
Huang, Ping ;
Ding, Mingye ;
Zhong, Jiasong ;
Ji, Zhenguo .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (14) :2833-2840
[5]   Efficient Broadband Upconversion of Near-Infrared Light in Dye-Sensitized Core/Shell Nanocrystals [J].
Chen, Guanying ;
Shao, Wei ;
Valiev, Rashid R. ;
Ohulchanskyy, Tymish Y. ;
He, Guang S. ;
Agren, Hans ;
Prasad, Paras N. .
ADVANCED OPTICAL MATERIALS, 2016, 4 (11) :1760-1766
[6]   Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal [J].
Chen, Guanying ;
Damasco, Jossana ;
Qiu, Hailong ;
Shao, Wei ;
Ohulchanskyy, Tymish Y. ;
Valiev, Rashid R. ;
Wu, Xiang ;
Han, Gang ;
Wang, Yan ;
Yang, Chunhui ;
Agren, Hans ;
Prasad, Paras N. .
NANO LETTERS, 2015, 15 (11) :7400-7407
[7]   Photon upconversion in core-shell nanoparticles [J].
Chen, Xian ;
Peng, Denfeng ;
Ju, Qiang ;
Wang, Feng .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (06) :1318-1330
[8]   An O2 Self-Sufficient Biomimetic Nanoplatform for Highly Specific and Efficient Photodynamic Therapy [J].
Cheng, Hong ;
Zhu, Jing-Yi ;
Li, Shi-Ying ;
Zeng, Jin-Yue ;
Lei, Qi ;
Chen, Ke-Wei ;
Zhang, Chi ;
Zhang, Xian-Zheng .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (43) :7847-7860
[9]   In Vivo Multimodality Imaging and Cancer Therapy by Near-Infrared Light-Triggered trans-Platinum Pro-Drug-Conjugated Upconverison Nanoparticles [J].
Dai, Yunlu ;
Xiao, Haihua ;
Liu, Jianhua ;
Yuan, Qinghai ;
Ma, Ping'an ;
Yang, Dongmei ;
Li, Chunxia ;
Cheng, Ziyong ;
Hou, Zhiyao ;
Yang, Piaoping ;
Lin, Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (50) :18920-18929
[10]   Enhanced Antitumor Efficacy by 808 nm Laser-Induced Synergistic Photothermal and Photodynamic Therapy Based on a Indocyanine-Green-Attached W18O49 Nanostructure [J].
Deng, Kerong ;
Hou, Zhiyao ;
Deng, Xiaoran ;
Yang, Piaoping ;
Li, Chunxia ;
Lin, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (47) :7280-7290