Minimal faithful representations of reductive Lie algebras

被引:20
作者
Burde, Dietrich [1 ]
Moens, Wolfgang [1 ]
机构
[1] Univ Vienna, Fak Math, A-1090 Vienna, Austria
关键词
Lie algebras; minimal faithful representations; maximal reductive; subalgebras;
D O I
10.1007/s00013-007-2378-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an explicit formula for the invariant mu(g) for finite dimensional semisimple, and reductive Lie algebras g over C. Here mu(g) is the minimal dimension of a faithful linear representation of g. The result can be used to study Dynkin's classification of maximal reductive subalgebras of semisimple Lie algebras.
引用
收藏
页码:513 / 523
页数:11
相关论文
共 10 条
[1]  
Borel A., 1949, COMMENT MATH HELV, V23, P200, DOI 10.1007/BF02565599
[2]   On a refinement of Ado's theorem [J].
Burde, D .
ARCHIV DER MATHEMATIK, 1998, 70 (02) :118-127
[3]  
Burde D., 2006, CENT EUR J MATH, V4, P323
[4]  
Dynkin E. B., 1952, AM MATH SOC TRANSL 2, V30, P349
[5]  
Dynkin E.B., 1952, AM MATH SOC TRANSL 2, V6, P245
[6]  
Iwahori N., 1959, Nagoya Math. J., V14, P59
[7]  
Jacobson N., 1944, B AM MATH SOC, V50, P431, DOI DOI 10.1090/S0002-9904-1944-08169-X
[8]  
MALCEV AI, 1944, ISV AKAD NAUK SSSR M, V8, P143
[9]   Abelian ideals in a Borel subalgebra of a complex simple Lie algebra [J].
Suter, R .
INVENTIONES MATHEMATICAE, 2004, 156 (01) :175-221
[10]  
[No title captured]