Evaluating TNA stability under simulated physiological conditions

被引:72
作者
Culbertson, Michelle C. [1 ]
Temburnikar, Kartik W. [1 ]
Sau, Sujay P. [1 ,3 ]
Liao, Jen-Yu [1 ,3 ]
Bala, Saikat [1 ,3 ]
Chaput, John C. [1 ,2 ,3 ]
机构
[1] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
[3] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
Threose nucleic acid; Biological stability; RNA analogue; NUCLEIC-ACID; THERAPEUTICS; SYSTEM; OLIGONUCLEOTIDES; EVOLUTION; DUPLEXES; DISEASE;
D O I
10.1016/j.bmcl.2016.03.118
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Chemically modified oligonucleotides are routinely used as diagnostic and therapeutic agents due to their enhanced biological stability relative to natural DNA and RNA. Here, we examine the biological stability of alpha-L-threofuranosyl nucleic acid (TNA), an artificial genetic polymer composed of repeating units of alpha-L-threofuranosyl sugars linked by 2',3'-phosphodiester bonds. We show that TNA remains undigested after 7 days of incubation in the presence of either 50% human serum or human liver microsomes and is stable against snake venom phosphordiesterase (a highly active 3' exonuclease). We further show that TNA will protect internal DNA residues from nuclease digestion and shield complementary RNA strands from RNA degrading enzymes. Together, these results demonstrate that TNA is an RNA analogue with high biological stability. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2418 / 2421
页数:4
相关论文
共 21 条
[1]   An in vivo evaluation of amphiphilic, biodegradable peptide copolymers as siRNA delivery agents [J].
Barrett, Stephanie E. ;
Abrams, Marc T. ;
Burke, Rob ;
Carr, Brian A. ;
Crocker, Louis S. ;
Garbaccio, Robert M. ;
Howell, Bonnie J. ;
Kemp, Eric A. ;
Kowtoniuk, Robert A. ;
Latham, Andrew H. ;
Leander, Karen R. ;
Leone, Anthony M. ;
Patel, Mihir ;
Pechenov, Sergey ;
Pudvah, Nicole T. ;
Riley, Sean ;
Sepp-Lorenzino, Laura ;
Walsh, Eileen S. ;
Williams, J. Michael ;
Colletti, Steven L. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2014, 466 (1-2) :58-67
[2]   RNA Targeting Therapeutics: Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform [J].
Bennett, C. Frank ;
Swayze, Eric E. .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2010, 50 :259-293
[3]   RNA-Based Therapeutics: Current Progress and Future Prospects [J].
Burnett, John C. ;
Rossi, John J. .
CHEMISTRY & BIOLOGY, 2012, 19 (01) :60-71
[4]   The Emerging World of Synthetic Genetics [J].
Chaput, John C. ;
Yu, Hanyang ;
Zhang, Su .
CHEMISTRY & BIOLOGY, 2012, 19 (11) :1360-1371
[5]   CHARACTERIZATION OF FULLY 2'-MODIFIED OLIGORIBONUCLEOTIDE HETERODUPLEX AND HOMODUPLEX HYBRIDIZATION AND NUCLEASE SENSITIVITY [J].
CUMMINS, LL ;
OWENS, SR ;
RISEN, LM ;
LESNIK, EA ;
FREIER, SM ;
MCGEE, D ;
GUINOSSO, CJ ;
COOK, PD .
NUCLEIC ACIDS RESEARCH, 1995, 23 (11) :2019-2024
[6]   Designing Chemically Modified Oligonucleotides for Targeted Gene Silencing [J].
Deleavey, Glen F. ;
Damha, Masad J. .
CHEMISTRY & BIOLOGY, 2012, 19 (08) :937-954
[7]  
Dunn M. R, 2016, ACS CHEM BIOL
[8]   The Structure of a TNA-TNA Complex in Solution: NMR Study of the Octamer Duplex Derived from α-(L)-Threofuranosyl-(3′-2′)-CGAATTCG [J].
Ebert, Marc-Olivier ;
Mang, Christian ;
Krishnamurthy, Ramanarayanan ;
Eschenmoser, Albert ;
Jaun, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (45) :15105-15115
[9]   The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes [J].
Freier, SM ;
Altmann, KH .
NUCLEIC ACIDS RESEARCH, 1997, 25 (22) :4429-4443
[10]   Toward an Alternative Biology [J].
Joyce, Gerald F. .
SCIENCE, 2012, 336 (6079) :307-308