Lateral Organic Solar Cells with Self-Assembled Semiconductor Nanowires

被引:30
作者
Kim, Min [1 ]
Park, Jong Hwan [1 ]
Kim, Joo Hyun [1 ]
Sung, Ji Ho [2 ]
Jo, Sae Byeok [1 ]
Jo, Moon-Ho [2 ]
Cho, Kilwon [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Chem Engn, Pohang 790784, South Korea
[2] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, South Korea
关键词
flexible applications; lateral structures; organic nanowires; organic solar cells; poly(3-hexylthiophene); POLYMER; EFFICIENT; BAND;
D O I
10.1002/aenm.201401317
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solution-processable organic semiconductor nanowires (NWs) offer a potentially powerful strategy for producing large-area printed flexible devices. Here, the fabrication of lateral organic solar cells (LOSC) using solution-processed organic NW blends on a flexible substrate to produce a power source for use in flexible integrated microelectronics is reported. A high photocarrier generation and an efficient charge sweep out are achieved by incorporating 1D self-assembled poly(3-hexylthiophene) NWs into the active layer, and an MoO3 interfacial layer with high work function is introduced to increase the built-in potential. These structures significantly increase the carrier diffusion/drift length and overall generated photocurrent in the channel. The utility of the LOSCs for high power source applications is demonstrated by using interdigitated electrode patterns that consist of multiple devices connected in parallel or in series. High photovoltage-producing LOSC modules on plastic substrates for use in flexible optoelectronic devices are successfully fabricated. The LOSCs described here offer a new device architecture for use in highly flexible photoresponsive energy devices.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors [J].
Ahn, Y ;
Dunning, J ;
Park, J .
NANO LETTERS, 2005, 5 (07) :1367-1370
[2]   Laser Processing in Industrial Solar Module Manufacturing [J].
Booth, Heather .
JOURNAL OF LASER MICRO NANOENGINEERING, 2010, 5 (03) :183-191
[3]   Oligo- and Polythiophene/ZnO Hybrid Nanowire Solar Cells [J].
Briseno, Alejandro L. ;
Holcombe, Thomas W. ;
Boukai, Akram I. ;
Garnett, Erik C. ;
Shelton, Steve W. ;
Frechet, Jean J. M. ;
Yang, Peidong .
NANO LETTERS, 2010, 10 (01) :334-340
[4]   Nanowire Crystals of a Rigid Rod Conjugated Polymer [J].
Dong, Huanli ;
Jiang, Shidong ;
Jiang, Lang ;
Liu, Yaling ;
Li, Hongxiang ;
Hu, Wenping ;
Wang, Erjing ;
Yan, Shouke ;
Wei, Zhongming ;
Xu, Wei ;
Gong, Xiong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (47) :17315-17320
[5]  
Dou LT, 2012, NAT PHOTONICS, V6, P180, DOI [10.1038/nphoton.2011.356, 10.1038/NPHOTON.2011.356]
[6]   Electric Field Dependent Photocurrent Decay Length in Single Lead Sulfide Nanowire Field Effect Transistors [J].
Graham, Rion ;
Miller, Chris ;
Oh, Eunsoon ;
Yu, Dong .
NANO LETTERS, 2011, 11 (02) :717-722
[7]   Efficient Polymer Solar Cells on Opaque Substrates with a Laminated PEDOT:PSS Top Electrode [J].
Gupta, Dhritiman ;
Wienk, Martijn M. ;
Janssen, Rene A. J. .
ADVANCED ENERGY MATERIALS, 2013, 3 (06) :782-787
[8]   Evidence for High-Efficiency Exciton Dissociation at Polymer/Single-Walled Carbon Nanotube Interfaces in Planar Nano-heterojunction Photovoltaics [J].
Ham, Moon-Ho ;
Paulus, Geraldine L. C. ;
Lee, Chang Young ;
Song, Changsik ;
Kalantar-zadeh, Kourosh ;
Choi, Wonjoon ;
Han, Jae-Hee ;
Strano, Michael S. .
ACS NANO, 2010, 4 (10) :6251-6259
[9]   Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures [J].
Hecht, David S. ;
Hu, Liangbing ;
Irvin, Glen .
ADVANCED MATERIALS, 2011, 23 (13) :1482-1513
[10]   About supramolecular assemblies of π-conjugated systems [J].
Hoeben, FJM ;
Jonkheijm, P ;
Meijer, EW ;
Schenning, APHJ .
CHEMICAL REVIEWS, 2005, 105 (04) :1491-1546