Fatigue damage induced by vortex-induced vibrations in oscillatory flow

被引:65
|
作者
Wang, Jungao [1 ]
Fu, Shixiao [1 ]
Baarholm, Rolf [2 ]
Wu, Jie [3 ]
Larsen, Carl Martin [4 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200030, Peoples R China
[2] STATOIL, Trondheim, Norway
[3] Marintek, Trondheim, Norway
[4] NTNU, Ctr Ships & Ocean Struct, Dept Marine Technol, Trondheim, Norway
基金
中国国家自然科学基金;
关键词
Fatigue damage; Vortex-induced vibration; Oscillatory flow; Modification factor; RISERS;
D O I
10.1016/j.marstruc.2014.10.011
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Vortex-induced vibration (VIV) of a flexible cylinder in oscillatory flow was experimentally investigated in an ocean basin. An intermittent VIV was confirmed to have occurred during the tests. The fatigue damage caused by VIV was calculated based on rain-flow counting and a standard S-N curve. There are 3 main observations for fatigue damage from VIV in oscillatory flow: 1) the damage varied significantly with the KC number, which is a unique feature for VIV in oscillatory flow. 2) Fatigue damage at small KC number cases was found to be larger compared to those at large KC numbers owing to the fact that number of vortex shedding cycles per half of the motion cycle is low, and damping within half of the motion cycle will hence become low. The fact that vortices from the previous cycle still are active during the next may also contribute to the large response at small KC numbers. 3) 'Amplitude modulation' and 'mode transition', two specific features for VIV in oscillatory flow, were found to have a strong influence on fatigue. Fatigue damage has also been calculated by an empirical VIV prediction model assuming that all cases have steady flow at an equivalent velocity. Finally, a simplified method for calculating fatigue damage from VIV in oscillatory flow based on steady flow conditions is proposed. A modification factor diagram is presented, but the scope of the present study is too limited to provide a good
引用
收藏
页码:73 / 91
页数:19
相关论文
共 50 条
  • [21] On fatigue damage of long flexible cylinders due to the higher harmonic force components and chaotic vortex-induced vibrations
    Zheng, Haining
    Price, Rachel E.
    Modarres-Sadeghi, Yahya
    Triantafyllou, Michael S.
    OCEAN ENGINEERING, 2014, 88 : 318 - 329
  • [22] NUMERICAL PREDICTION OF FATIGUE DAMAGE IN STEEL CATENARY RISER DUE TO VORTEX-INDUCED VIBRATION
    GAO Yun State Key Laboratory of Structural Analysis for Industrial Equipment and Department of Naval Architecture and Faculty of Vehicle Engineering and Mechanics
    JournalofHydrodynamics, 2011, 23 (02) : 154 - 163
  • [23] Circular cylinder wakes and vortex-induced vibrations
    Bearman, P. W.
    JOURNAL OF FLUIDS AND STRUCTURES, 2011, 27 (5-6) : 648 - 658
  • [24] NUMERICAL PREDICTION OF FATIGUE DAMAGE IN STEEL CATENARY RISER DUE TO VORTEX-INDUCED VIBRATION
    Gao Yun
    Zong Zhi
    Sun Lei
    JOURNAL OF HYDRODYNAMICS, 2011, 23 (02) : 154 - 163
  • [25] Numerical Prediction of Fatigue Damage in Steel Catenary Riser Due to Vortex-Induced Vibration
    Yun Gao
    Zhi Zong
    Lei Sun
    Journal of Hydrodynamics, 2011, 23 : 154 - 163
  • [26] Tests for “time sharing” of vortex-induced vibration of a flexible cylinder in oscillatory flow
    Fu, Shi-Xiao, 1600, Chinese Vibration Engineering Society (33): : 1 - 7
  • [27] Experimental investigation on vortex-induced force of a flexible pipe under oscillatory flow
    Zhang, Mengmeng
    Fu, Shixiao
    Ren, Haojie
    Xu, Yuwang
    Qin, Xu
    APPLIED OCEAN RESEARCH, 2022, 126
  • [28] Heave Motion Induced Vortex-Induced Vibrations of a Full-Scale Steel Lazy Wave Riser
    Yin, Decao
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (04):
  • [29] Drag and added mass coefficients of a flexible pipe undergoing vortex-induced vibration in an oscillatory flow
    Ren, Haojie
    Zhang, Mengmeng
    Wang, Yifan
    Xu, Yuwang
    Fu, Shixiao
    Fu, Xuepeng
    Zhao, Bing
    OCEAN ENGINEERING, 2020, 210
  • [30] Numerical investigation of vortex-induced vibrations (VIV) of a rotating cylinder in in-line and cross-flow directions subjected to oscillatory flow
    Rehman, Ubaid Ur
    Munir, Adnan
    Khan, Niaz Bahadur
    Zhao, Ming
    Kashif, Muhammad
    Islam, Mohammad S.
    Saeed, Zeeshan
    Ali, Mian Ashfaq
    OCEAN ENGINEERING, 2024, 304