Detector-Only Spectrometer Based on Structurally Colored Silicon Nanowires and a Reconstruction Algorithm

被引:147
作者
Meng, Jiajun [1 ]
Cadusch, Jasper J. [1 ]
Crozier, Kenneth B. [1 ,2 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
[2] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Microspectrometers; silicon nanowires; photodetectors; nanofabrication; PHOTODETECTORS; NANOSTRUCTURES; RESOLUTION; GAMUT;
D O I
10.1021/acs.nanolett.9b03862
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spectroscopy is a cornerstone in the field of optics. Conventional spectrometers generally require two elements. The first provides wavelength selectivity, for example, diffraction grating or Michelson interferometer. The second is a detector (or detector array). Many applications would benefit from very small and lightweight spectrometers. This motivates us to investigate what may be regarded as an ultimate level of miniaturization for a spectrometer, in which it consists solely of a detector array. We demonstrate a chip containing 24 pixels, each comprising a silicon nanowire (Si NW) array photodetector formed above a planar photodetector. The NWs are structurally colored, enabling us to engineer the responsivity spectra of all photodetectors in the chip. Each pixel thus combines wavelength selectivity and photodetection functions. We demonstrate the use of our chip to reconstruct the spectrum of an unknown light source impinging upon it. This is achieved by an algorithm that takes as its inputs the measured photocurrents from the pixels and a library of their responsivity spectra.
引用
收藏
页码:320 / 328
页数:9
相关论文
共 45 条
[1]   A colloidal quantum dot spectrometer [J].
Bao, Jie ;
Bawendi, Moungi G. .
NATURE, 2015, 523 (7558) :67-+
[2]   Silicon microspectrometer chip based on nanostructured fishnet photodetectors with tailored responsivities and machine learning [J].
Cadusch, Jasper J. ;
Meng, Jiajun ;
Craig, Benjamin ;
Crozier, Kenneth B. .
OPTICA, 2019, 6 (09) :1171-1177
[3]   Tuning the Color of Silicon Nanostructures [J].
Cao, Linyou ;
Fan, Pengyu ;
Barnard, Edward S. ;
Brown, Ana M. ;
Brongersma, Mark L. .
NANO LETTERS, 2010, 10 (07) :2649-2654
[4]   High-selectivity single-chip spectrometer in silicon for operation at visible part of the spectrum [J].
Correia, JH ;
Bartek, M ;
Wolffenbuttel, RF .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (03) :553-559
[5]   Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces [J].
Craig, Benjamin ;
Shrestha, Vivek Raj ;
Meng, Jiajun ;
Cadusch, Jasper J. ;
Crozier, Kenneth B. .
OPTICS LETTERS, 2018, 43 (18) :4481-4484
[6]   Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space [J].
Dong, Zhaogang ;
Ho, Jinfa ;
Yu, Ye Feng ;
Fu, Yuan Hsing ;
Paniagua-Dominguez, Ramon ;
Wang, Sihao ;
Kuznetsov, Arseniy I. ;
Yang, Joel K. W. .
NANO LETTERS, 2017, 17 (12) :7620-7628
[7]   Surface plasmon resonance based integrable micro spectrometer [J].
Ehlermann, Jens ;
Siebels, Jan ;
Fohrmann, Simone ;
Mendach, Stefan .
APPLIED PHYSICS LETTERS, 2015, 106 (10)
[8]   Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry [J].
Ellenbogen, Tal ;
Seo, Kwanyong ;
Crozier, Kenneth B. .
NANO LETTERS, 2012, 12 (02) :1026-1031
[9]  
Hayes M. H., 1996, Statistical digital signal processing and modeling
[10]   The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures [J].
James, Timothy D. ;
Mulvaney, Paul ;
Roberts, Ann .
NANO LETTERS, 2016, 16 (06) :3817-3823