Dielectric Constant, Exchange Bias, and Magnetodielectric Effect in CrO2/Cr2O3 Nanostructures

被引:1
作者
Zhang, Xiaoyu [1 ]
Chen, Yajie [2 ,3 ,4 ]
Tan, Yang [1 ]
Harris, Vincent G. [2 ,3 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Phys Sci & Technol, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Tech, Suzhou 215009, Peoples R China
[2] Northeastern Univ, Ctr Microwave Magnet Mat & Integrated Circuits, Boston, MA 02115 USA
[3] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[4] Rogers Corp, Innovat Ctr, Burlington, MA 01803 USA
基金
中国国家自然科学基金;
关键词
Exchange bias; Magnetodielectric effect; Magnetoresistance; Core; shell nanostructures; COFE/CU MULTILAYERS; MAGNETORESISTANCE; LAYER;
D O I
10.1007/s10948-022-06270-0
中图分类号
O59 [应用物理学];
学科分类号
摘要
The magnetodielectric effect has attracted considerable attention due to its intriguing physics and potential engineering applications in modern data storage, sensors, gyrators, and other novel low power electronic applications. Here, we investigate the dielectric behavior, exchange bias coupling, and magnetodielectric effect in nano-scaled CrO2/Cr2O3 core-shell structures. Importantly, our experiments have revealed interesting results whereupon the magnetodielectric effect and exchange bias coupling are strongly correlated in ferromagnetic and antiferromagnetic structures. It is notable that the magnetodielectric effect at room temperature can be enhanced from 1 to 3.5% with exchange bias coupling. Thus, the magnetodielectric effect is enhanced by as much as 250% with the assistance of exchange bias coupling. Results are interpreted here in terms of a spin-dependent transport model.
引用
收藏
页码:1719 / 1725
页数:7
相关论文
共 28 条
[1]   Magnetization reversal in exchange-biased Ni/NiO layered structures [J].
Ben Youssef, J. ;
Castel, V. ;
Garello, K. ;
Gargam, N. ;
Pogossian, S. ;
Spenato, D. ;
Dekadjevi, D. T. ;
Suvorova, A. ;
Charlton, T. R. ;
Dalgliesh, R. M. ;
Langridge, S. .
PHYSICAL REVIEW B, 2007, 76 (13)
[2]   Magnetocapacitance without magnetoelectric coupling [J].
Catalan, G .
APPLIED PHYSICS LETTERS, 2006, 88 (10)
[3]   Tunable broadband antireflection structures for silicon at terahertz frequency [J].
Chen, Y. W. ;
Han, P. Y. ;
Zhang, X. -C. .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[4]   Role of grain boundaries on magnetoresistance of CrO2-TiO2 composites:: impedance spectroscopy study [J].
Chen, YJ ;
Zhang, XY ;
Li, ZY .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 267 (02) :152-160
[5]   Enhanced room-temperature magnetoresistance in half-metallic CrO2/polymer composites [J].
Chen, YJ ;
Zhang, XY ;
Li, ZY .
CHEMICAL PHYSICS LETTERS, 2003, 375 (1-2) :213-218
[6]   Multiferroics: a magnetic twist for ferroelectricity [J].
Cheong, Sang-Wook ;
Mostovoy, Maxim .
NATURE MATERIALS, 2007, 6 (01) :13-20
[7]   Magnetoresistance of chromium dioxide powder compacts [J].
Coey, JMD ;
Berkowitz, AE ;
Balcells, L ;
Putris, FF ;
Barry, A .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3815-3818
[8]   Temperature dependence of exciton linewidths in InSb quantum wells [J].
Dai, N ;
Brown, F ;
Doezema, RE ;
Chung, SJ ;
Santos, MB .
PHYSICAL REVIEW B, 2001, 63 (11)
[9]   Critical size for exchange bias in ferromagnetic-antiferromagnetic particles [J].
Dobrynin, AN ;
Ievlev, DN ;
Temst, K ;
Lievens, P ;
Margueritat, J ;
Gonzalo, J ;
Afonso, CN ;
Zhou, SQ ;
Vantomme, A ;
Piscopiello, E ;
Van Tendeloo, G .
APPLIED PHYSICS LETTERS, 2005, 87 (01)
[10]   Lattice dynamics and microscopic mechanisms of the spontaneous magnetodielectric effect in the antiferromagnetic fluoroperovskites KCoF3 and RbCoF3 [J].
Dubrovin, R. M. ;
Siverin, N., V ;
Syrnikov, P. P. ;
Novikova, N. N. ;
Boldyrev, K. N. ;
Pisarev, R., V .
PHYSICAL REVIEW B, 2019, 100 (02)