LINEAR BUCKLING ANALYSIS OF CRACKED PLATES BY SFEM AND XFEM

被引:57
作者
Baiz, Pedro M. [1 ]
Natarajan, Sundararajan [2 ]
Bordas, Stephane P. A. [2 ]
Kerfriden, Pierre [2 ]
Rabczuk, Timon [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England
[2] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, S Glam, Wales
[3] Bauhaus Univ Weimar, Dept Civil Engn, D-99421 Weimar, Germany
基金
英国工程与自然科学研究理事会;
关键词
Mindlin; Reissner; shear deformable plate theory; buckling; partition of unity methods (PUM); extended finite element method (XFEM); fracture; FINITE-ELEMENT-METHOD; RECTANGULAR MINDLIN PLATES; SOLID MECHANICS PROBLEMS; MESHFREE THIN SHELL; G SPACE THEORY; WEAK W-2 FORM; UNIFIED FORMULATION; DISCONTINUITIES; INTEGRATION; FRACTURE;
D O I
10.2140/jomms.2011.6.1213
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the linear buckling problem for isotropic plates is studied using a quadrilateral element with smoothed curvatures and the extended finite element method. First, the curvature at each point is obtained by a nonlocal approximation via a smoothing function. This element is later coupled with partition of unity enrichment to simplify the simulation of cracks. The proposed formulation suppresses locking and yields elements which behave very well, even in the thin plate limit. The buckling coefficient and mode shapes of square and rectangular plates are computed as functions of crack length, crack location, and plate thickness. The effects of different boundary conditions are also studied.
引用
收藏
页码:1213 / 1238
页数:26
相关论文
共 42 条
[1]   Numerical modelling for buckling analysis of cracked shear panels [J].
Alinia, M. M. ;
Hosseinzadeh, S. A. A. ;
Habashi, H. R. .
THIN-WALLED STRUCTURES, 2007, 45 (12) :1058-1067
[2]  
[Anonymous], 2009, ABAQUS US MAN VERS 6
[3]   Non-linear analysis of shells with arbitrary evolving cracks using XFEM [J].
Areias, PMA ;
Belytschko, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 62 (03) :384-415
[4]   SPECIAL FINITE-ELEMENT METHODS FOR A CLASS OF 2ND-ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS [J].
BABUSKA, I ;
CALOZ, G ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :945-981
[5]   Vibration analysis of cracked plates using the extended finite element method [J].
Bachene, M. ;
Tiberkak, R. ;
Rechak, S. .
ARCHIVE OF APPLIED MECHANICS, 2009, 79 (03) :249-262
[6]   A 4-NODE PLATE BENDING ELEMENT BASED ON MINDLIN REISSNER PLATE-THEORY AND A MIXED INTERPOLATION [J].
BATHE, KJ ;
DVORKIN, EN .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (02) :367-383
[7]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[8]  
2-S
[9]   A review of extended/generalized finite element methods for material modeling [J].
Belytschko, Ted ;
Gracie, Robert ;
Ventura, Giulio .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (04)
[10]   On the approximation in the smoothed finite element method (SFEM) [J].
Bordas, Stephane P. A. ;
Natarajan, Sundararajan .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (05) :660-670