On the H1-L1 boundedness of operators

被引:82
作者
Meda, Stefano [1 ]
Sjogren, Peter [2 ,3 ]
Vallarino, Maria [4 ]
机构
[1] Univ Milano Bicocca, Dept Math & Applicaz, I-20125 Milan, Italy
[2] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
[3] Univ Gothenburg, Dept Math Sci, SE-41296 Gothenburg, Sweden
[4] Univ Orleans, Lab MAPMO, UMR 6628, UFR Sci, F-45067 Orleans, France
关键词
BMO; atomic Hardy space; extension of operators;
D O I
10.1090/S0002-9939-08-09365-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if q is in (1,infinity), Y is a Banach space, and T is a linear operator defined on the space of finite linear combinations of (1, q)-atoms in R-n with the property that sup{parallel to Ta parallel to Y : a is a (1,q)-atom} < infinity, then T admits a ( unique) continuous extension to a bounded linear operator from H-1(R-n) to Y. We show that the same is true if we replace (1,q)-atoms by continuous (1,infinity)-atoms. This is known to be false for (1,infinity)-atoms.
引用
收藏
页码:2921 / 2931
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 1987, Topological vector classes, DOI DOI 10.1007/978-3-642-61715-7
[2]   Boundedness of operators on Hardy spaces via atomic decompositions [J].
Bownik, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) :3535-3542
[3]  
Bownik M, 2003, MEM AM MATH SOC, V164, P1
[4]  
CARBONARO A, UNPUB BMO SINGULAR I
[5]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[6]  
DeFrancia J.L.R., 1985, WEIGHTED NORM INEQUA
[7]  
Folland GB., 1982, Mathematical Notes
[8]  
GRAFAKOS L, UNPUB MAXIMAL FUNCTI
[9]  
Grafakos L., 2004, CLASSICAL MODERN FOU
[10]   BMO and H1 for the Ornstein-Uhlenbeck operator [J].
Mauceri, Giancarlo ;
Meda, Stefano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 252 (01) :278-313