Gold atomic clusters extracting the valence electrons to shield the carbon monoxide passivation on near-monolayer core-shell nanocatalysts in methanol oxidation reactions

被引:11
作者
Chen, Tsan-Yao [1 ,2 ]
Li, Hong Dao [3 ]
Lee, Guo-Wei [3 ]
Huang, Po-Chun [1 ]
Yang, Po-Wei [1 ]
Liu, Yu-Ting [4 ]
Liao, Yen-Fa [5 ]
Jeng, Horng-Tay [3 ]
Lin, Deng-Sung [3 ]
Lin, Tsang-Lang [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 30013, Taiwan
[2] Inst Nucl Engn & Sci, Hsinchu 30013, Taiwan
[3] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
[4] Tunghai Univ, Dept Environm Sci & Engn, Taichung 40704, Taiwan
[5] Natl Synchrotron Radiat Res Ctr, Hsinchu 30013, Taiwan
关键词
SMALL-ANGLE SCATTERING; FUEL-CELL; PLATINUM OXIDES; NANOPARTICLES; CATALYSTS; ELECTROOXIDATION; ALLOY; ELECTROCATALYSTS; BEHAVIOR; SIZE;
D O I
10.1039/c5cp01103e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic-scale gold clusters were intercalated at the inter-facet corner sites of Pt-shell Ru-core nanocatalysts with near-monolayer shell thickness. We demonstrated that these unique clusters could serve as a drain of valence electrons in the kink region of the core-shell heterojunction. As jointly revealed by density functional theory calculations and valence band spectra, these Au clusters extract core-level electrons to the valence band. They prevent corrosion due to protonation and enhance the tolerance of CO by increasing the electronegativity at the outermost surface of the NCs during the methanol oxidation reaction (MOR). In these circumstances, the retained current density of Pt-shell Ru-core NCs is doubled in a long-term (2 hours) MOR at a fixed voltage (0.5 V vs. SCE) by intercalating these sub-nanometer gold clusters. Such novel structural confinement provides a possible strategy for developing direct-methanol fuel cell (DMFC) modules with high power and stability.
引用
收藏
页码:15131 / 15139
页数:9
相关论文
共 20 条
[1]   Platinum monolayer fuel cell electrocatalysts [J].
Adzic, R. R. ;
Zhang, J. ;
Sasaki, K. ;
Vukmirovic, M. B. ;
Shao, M. ;
Wang, J. X. ;
Nilekar, A. U. ;
Mavrikakis, M. ;
Valerio, J. A. ;
Uribe, F. .
TOPICS IN CATALYSIS, 2007, 46 (3-4) :249-262
[2]   Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen [J].
Alayoglu, Selim ;
Nilekar, Anand U. ;
Mavrikakis, Manos ;
Eichhorn, Bryan .
NATURE MATERIALS, 2008, 7 (04) :333-338
[3]   Rh-Pt Bimetallic Catalysts: Synthesis, Characterization, and Catalysis of Core-Shell, Alloy, and Monometallic Nanoparticles [J].
Alayoglu, Selim ;
Eichhorn, Bryan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (51) :17479-17486
[4]   Ligand effects in heterogeneous catalysis and electrochemistry [J].
Bligaard, T. ;
Norskov, J. K. .
ELECTROCHIMICA ACTA, 2007, 52 (18) :5512-5516
[5]   Crystal growth of platinum-ruthenium bimetallic nanocrystallites and their methanol electrooxidation activity [J].
Chen, Tsan-Yao ;
Liu, Yu-Ting ;
Chen, Hong-Shuo ;
Wang, Kuan-Wen ;
Yang, Cheng-Tao ;
Luo, Tzy-Jiun Mark ;
Lee, Chih-Hao ;
Lin, Tsang-Lang .
CRYSTENGCOMM, 2013, 15 (19) :3932-3942
[6]   Effects of Pt Shell Thicknesses on the Atomic Structure of Ru-Pt Core-Shell Nanoparticles for Methanol Electrooxidation Applications [J].
Chen, Tsan-Yao ;
Lin, Tsang-Lang ;
Luo, Tzy-Jiun Mark ;
Choi, Yongjae ;
Lee, Jyh-Fu .
CHEMPHYSCHEM, 2010, 11 (11) :2383-2392
[7]   Particle-Size- and Ru-Core-Induced Surface Electronic States of Ru-Core/Pt-Shell Electrocatalyst Nanoparticles [J].
Goto, Shuji ;
Hosoi, Shizuka ;
Arai, Ryoji ;
Tanaka, Shinji ;
Umeda, Minoru ;
Yoshimoto, Mamoru ;
Kudo, Yoshihiro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (05) :2634-2640
[8]   Alloy catalysts designed from first principles [J].
Greeley, J ;
Mavrikakis, M .
NATURE MATERIALS, 2004, 3 (11) :810-815
[9]  
Guinier G Fournet A., 1955, SMALL ANGLE SCATTERI
[10]   Voltammetric investigation of platinum oxides. I. Effects of ageing on their formation/reduction behavior as well as catalytic activities for methanol oxidation [J].
Hu, CC ;
Liu, KY .
ELECTROCHIMICA ACTA, 1999, 44 (16) :2727-2738