Direct calculation of modal parameters from matrix orthogonal polynomials

被引:5
作者
El-Kafafy, Mahmoud [1 ]
Guillaume, Patrick [1 ]
机构
[1] Vrije Univ Brussel, Acoust & Vibrat Res Grp, Dept Mech Engn, B-1050 Brussels, Belgium
关键词
Orthogonal polynomials; Modal parameters; Least squares estimator; Stabilization diagram;
D O I
10.1016/j.ymssp.2011.04.006
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The object of this paper is to introduce a new technique to derive the global modal parameter (i.e. system poles) directly from estimated matrix orthogonal polynomials. This contribution generalized the results given in Rolain et al. (1994) [5] and Rolain et al. (1995) [6] for scalar orthogonal polynomials to multivariable (matrix) orthogonal polynomials for multiple input multiple output (MIMO) system. Using orthogonal polynomials improves the numerical properties of the estimation process. However, the derivation of the modal parameters from the orthogonal polynomials is in general ill-conditioned if not handled properly. The transformation of the coefficients from orthogonal polynomials basis to power polynomials basis is known to be an ill-conditioned transformation. In this paper a new approach is proposed to compute the system poles directly from the multivariable orthogonal polynomials. High order models can be used without any numerical problems. The proposed method will be compared with existing methods (Van Der Auweraer and Leuridan (1987) [4] Chen and Xu (2003) [7]. For this comparative study, simulated as well as experimental data will be used. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2375 / 2387
页数:13
相关论文
共 13 条
[1]   A dual fitting algorithm for modal parameters identification [J].
Chen, HH ;
Xu, F .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2003, 17 (03) :713-721
[2]   Almost disturbance decoupling and tracking control for multi-input multi-output non-linear uncertain systems: application to a half-car active suspension system [J].
Chien, T-L ;
Chen, C-C ;
Tsai, M-C ;
Chen, Y-C .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2009, 223 (I2) :215-227
[3]  
ELKAFAFY M, 2010, P ISMA 2010 LEUV BEL
[4]  
Formenti D., 1982, P 1 IMAC
[5]   The PolyMAX frequency-domain method: a new standard for modal parameter estimation? [J].
Peeters, B ;
Van der Auweraer, H ;
Guillaume, P ;
Leuridan, J .
SHOCK AND VIBRATION, 2004, 11 (3-4) :395-409
[6]  
RICHARDSON MH, 1982, P 3 INT MOD AN C ORL
[7]  
ROLAIN Y, 1994, IEEE DECIS CONTR P, P3365, DOI 10.1109/CDC.1994.411664
[8]  
ROLAIN Y, 1995, IEEE T AUTOMATIC CON, V40
[9]   A FREQUENCY-DOMAIN GLOBAL PARAMETER-ESTIMATION METHOD FOR MULTIPLE REFERENCE FREQUENCY-RESPONSE MEASUREMENTS [J].
SHIH, CY ;
TSUEI, YG ;
ALLEMANG, RJ ;
BROWN, DL .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1988, 2 (04) :349-365
[10]  
TZUUHSENG S, 2010, INT J AUTOMOTIVE TEC, V11, P581