Nanoscale thermometry by scanning thermal microscopy

被引:38
作者
Menges, Fabian [1 ]
Riel, Heike [1 ]
Stemmer, Andreas [2 ]
Gotsmann, Bernd [1 ]
机构
[1] IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Nanotechnol Grp, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
基金
瑞士国家科学基金会;
关键词
QUANTITATIVE THERMOMETRY; SAMPLE; PROBES;
D O I
10.1063/1.4955449
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Measuring temperature is a central challenge in nanoscience and technology. Addressing this challenge, we report the development of a high-vacuum scanning thermal microscope and a method for non-equilibrium scanning probe thermometry. The microscope is built inside an electromagnetically shielded, temperature-stabilized laboratory and features nanoscopic spatial resolution at sub-nanoWatt heat flux sensitivity. The method is a dual signal-sensing technique inferring temperature by probing a total steady-state heat flux simultaneously to a temporally modulated heat flux signal between a self-heated scanning probe sensor and a sample. Contact-related artifacts, which so far limit the reliability of nanoscopic temperature measurements by scanning thermal microscopy, are minimized. We characterize the microscope's performance and demonstrate the benefits of the new thermometry approach by studying hot spots near lithographically defined constrictions in a self-heated metal interconnect. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 37 条
[1]   Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe [J].
Aigouy, L ;
Tessier, G ;
Mortier, M ;
Charlot, B .
APPLIED PHYSICS LETTERS, 2005, 87 (18) :1-3
[2]  
Bontempi A, 2014, HIGH TEMP-HIGH PRESS, V43, P321
[3]  
Borca-Tasciuc T., 2013, ANN REV HEAT T, V16, P211, DOI DOI 10.1615/ANNUALREVHEATTRANSFER.V16.80
[4]   Thermometry at the nanoscale [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
NANOSCALE, 2012, 4 (16) :4799-4829
[5]   Quantitative temperature profiling through null-point scanning thermal microscopy [J].
Chung, J. ;
Kim, K. ;
Hwang, G. ;
Kwon, O. ;
Choi, Y. K. ;
Lee, J. S. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 62 :109-113
[6]   Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method [J].
Chung, Jaehun ;
Kim, Kyeongtae ;
Hwang, Gwangseok ;
Kwon, Ohmyoung ;
Jung, Seungwon ;
Lee, Junghoon ;
Lee, Jae Woo ;
Kim, Gyu Tae .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (11)
[7]  
Chung Jinsuk., 2012, High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for, P1
[8]   Cantilevers with nano-heaters for thermomechanical storage application [J].
Drechsler, U ;
Bürer, N ;
Despont, M ;
Dürig, U ;
Gotsmann, B ;
Robin, F ;
Vettiger, P .
MICROELECTRONIC ENGINEERING, 2003, 67-8 :397-404
[9]   A high frequency sensor for optical beam deflection atomic force microscopy [J].
Enning, Raoul ;
Ziegler, Dominik ;
Nievergelt, Adrian ;
Friedlos, Ralph ;
Venkataramani, Krithika ;
Stemmer, Andreas .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (04)
[10]   DC thermal microscopy: study of the thermal exchange between a probe and a sample [J].
Gomes, S ;
Trannoy, N ;
Grossel, P .
MEASUREMENT SCIENCE AND TECHNOLOGY, 1999, 10 (09) :805-811