Convergence of a space-time continuous Galerkin method for the wave equation

被引:1
作者
Zhao, Zhihui [1 ]
Li, Hong [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, 235 West Rd Univ, Saihan Dist 010021, Hohhot, Peoples R China
基金
美国国家科学基金会;
关键词
continuous Galerkin method; wave equation; optimal orders of convergence; numerical example; CONTINUOUS FINITE-ELEMENTS;
D O I
10.1186/s13660-016-1215-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives a new theoretical analysis of the space-time continuous Galerkin (STCG) method for the wave equation. We prove the existence and uniqueness of the numerical solutions and get optimal orders of convergence to numerical solutions regarding space that do not need any compatibility conditions on the space and time mesh size. Finally, we employ a numerical example to validate the effectiveness and feasibility of the STCG method.
引用
收藏
页数:18
相关论文
共 14 条
[1]  
Adams R.A., 1975, Sobolev Spaces
[2]  
[Anonymous], 2006, FDN APPL MIXED FINIT
[3]  
AZIZ AK, 1989, MATH COMPUT, V52, P255, DOI 10.1090/S0025-5718-1989-0983310-2
[4]   CONTINUOUS FINITE-ELEMENTS IN-SPACE AND TIME FOR THE NONHOMOGENEOUS WAVE-EQUATION [J].
BALES, L ;
LASIECKA, I .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (03) :91-102
[5]   NEGATIVE NORM ESTIMATES FOR FULLY DISCRETE FINITE-ELEMENT APPROXIMATIONS TO THE WAVE-EQUATION WITH NONHOMOGENEOUS L(2) DIRICHLET BOUNDARY DATA [J].
BALES, L ;
LASIECKA, I .
MATHEMATICS OF COMPUTATION, 1995, 64 (209) :89-115
[6]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[7]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[8]   A continuous space-time finite element method for the wave equation [J].
French, DA ;
Peterson, TE .
MATHEMATICS OF COMPUTATION, 1996, 65 (214) :491-506
[9]  
FRENCH DA, 1990, APPL MATH COMPUT, V39, P271
[10]   A SPACE-TIME FINITE-ELEMENT METHOD FOR THE WAVE-EQUATION [J].
FRENCH, DA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 107 (1-2) :145-157