A Note on the Domination Number of Triangulations

被引:5
作者
Furuya, Michitaka [1 ]
Matsumoto, Naoki [2 ]
机构
[1] Tokyo Univ Sci, Dept Math Informat Sci, Tokyo 162, Japan
[2] Yokohama Natl Univ, Grad Sch Environm & Informat Sci, Yokohama, Kanagawa, Japan
关键词
SETS; GRAPHS;
D O I
10.1002/jgt.21818
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove that every triangulation G on any closed surface has domination number at most vertical bar G vertical bar/3. This unifies some results on the domination number of a triangulation on a closed surface. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:83 / 85
页数:3
相关论文
共 9 条
[1]   Transversals and domination in uniform hypergraphs [J].
Bujtas, Csilla ;
Henning, Michael A. ;
Tuza, Zsolt .
EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (01) :62-71
[2]   Homeomorphically Irreducible Spanning Trees in Locally Connected Graphs [J].
Chen, Guantao ;
Ren, Han ;
Shan, Songling .
COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2) :107-111
[3]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[4]   Dominating Sets in Triangulations on Surfaces [J].
Honjo, Tatsuya ;
Kawarabayashi, Ken-ichi ;
Nakamoto, Atsuhiro .
JOURNAL OF GRAPH THEORY, 2010, 63 (01) :17-30
[5]   Dominating sets in plane triangulations [J].
King, Erika L. C. ;
Pelsmajer, Michael J. .
DISCRETE MATHEMATICS, 2010, 310 (17-18) :2221-2230
[6]   Dominating sets in triangulations on surfaces [J].
Liu, Hong ;
Pelsmajer, Michael J. .
ARS MATHEMATICA CONTEMPORANEA, 2011, 4 (01) :177-204
[7]   Dominating sets in planar graphs [J].
Matheson, LR ;
Tarjan, RE .
EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (06) :565-568
[8]   On certain spanning subgraphs of embeddings with applications to domination [J].
Plummer, Michael D. ;
Zha, Xiaoya .
DISCRETE MATHEMATICS, 2009, 309 (14) :4784-4792
[9]  
Ringel G., 1978, LECT NOTES MATH, V642, P465