POINT VORTICES ON THE SPHERE: STABILITY OF SYMMETRIC RELATIVE EQUILIBRIA

被引:20
作者
Laurent-Polz, Frederic [1 ]
Montaldi, James [2 ]
Roberts, Mark [3 ]
机构
[1] Inst Non Lineaire Nice, F-06560 Valbonne, France
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[3] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
关键词
Point vortices; Hamiltonian systems; stability; bifurcations; symmetry; HAMILTONIAN-SYSTEMS; NONLINEAR STABILITY; VORTEX DYNAMICS; BIFURCATIONS; BODY;
D O I
10.3934/jgm.2011.3.439
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the linear and nonlinear stability and instability of certain symmetric configurations of point vortices on the sphere forming relative equilibria. These configurations consist of one or two rings, and a ring with one or two polar vortices. Such configurations have dihedral symmetry, and the symmetry is used to block diagonalize the relevant matrices, to distinguish the subspaces on which their eigenvalues need to be calculated, and also to describe the bifurcations that occur as eigenvalues pass through zero.
引用
收藏
页码:439 / 486
页数:48
相关论文
共 42 条
[1]  
[Anonymous], 1975, TABLE SERIES PRODUCT
[2]  
[Anonymous], 1867, PHILOS MAG, V33, P485, DOI DOI 10.1080/14786446708639824
[3]   Vortex crystals [J].
Aref, H ;
Newton, PK ;
Stremler, MA ;
Tokieda, T ;
Vainchtein, DL .
ADVANCES IN APPLIED MECHANICS, VOL 39, 2003, 39 :1-79
[4]   Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere [J].
Boatto, S ;
Cabral, HE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :216-230
[5]  
BOGOMOLOV VA, 1977, FLUID DYNAM, V6, P863, DOI DOI 10.1007/BF01090320
[6]  
Buono PL, 2005, LOND MATH S, V306, P357
[7]   STABILITY OF RELATIVE EQUILIBRIA IN THE PROBLEM OF N+1 VORTICES [J].
Cabral, H. E. ;
Schmidt, D. S. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (02) :231-250
[8]   Stability and bifurcations for the N+1 vortex problem on the sphere [J].
Cabral, HE ;
Meyer, KR ;
Schmidt, DS .
REGULAR & CHAOTIC DYNAMICS, 2003, 8 (03) :259-282
[9]  
Chossat P, 2003, ARCH RATION MECH AN, V167, P83, DOI 10.1007/s00205-003-0244-y
[10]   Hamiltonian Hopf bifurcation with symmetry [J].
Chossat, P ;
Ortega, JP ;
Ratiu, TS .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (01) :1-33