Rank of elliptic curves over almost separably closed fields

被引:15
作者
Larsen, M [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
D O I
10.1112/S0024609303002431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over a finitely generated infinite field K. Let K-S denote a separable closure of K, sigma an element of the Galois group G(K) = Gal(K-S/K), and K-S(sigma) the invariant subfield of K-S. If the characteristic of K is not 2 and a belongs to a suitable open subgroup of G(K), then E(K-S(sigma)) has infinite rank.
引用
收藏
页码:817 / 820
页数:4
相关论文
共 5 条
[1]  
DELIGNE P, 1972, LECT NOTES MATH, V476
[2]  
FREY G, 1974, P LOND MATH SOC, V28, P112
[3]  
Geyer Wulf-Dieter, 1978, ISR J MATH, V31, P157
[4]  
Lang S., 2013, Fundamentals of Diophantine Geometry
[5]  
SILVERMAN JH, 1983, J LOND MATH SOC, V28, P1