On the Thermodynamics of Classical Micro-Canonical Systems

被引:11
作者
Baeten, Maarten [1 ]
Naudts, Jan [1 ]
机构
[1] Univ Antwerp, Dept Nat Kunde, B-2610 Antwerp, Belgium
关键词
microcanonical ensemble; Tsallis entropy; Renyi entropy; q-exponential distribution; 1ST-ORDER PHASE-TRANSITIONS; MICROCANONICAL ENSEMBLE; MODEL; TOPOLOGY; ENTROPY;
D O I
10.3390/e13061186
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give two arguments why the thermodynamic entropy of non-extensive systems involves Renyi's entropy function rather than that of Tsallis. The first argument is that the temperature of the configurational subsystem of a mono-atomic gas is equal to that of the kinetic subsystem. The second argument is that the instability of the pendulum, which occurs for energies close to the rotation threshold, is correctly reproduced.
引用
收藏
页码:1186 / 1199
页数:14
相关论文
共 38 条
[1]   Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies:: A basis for q-exponential distributions -: art. no. 046134 [J].
Abe, S .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[2]   Topological signature of first-order phase transitions in a mean-field model [J].
Angelani, L ;
Casetti, L ;
Pettini, M ;
Ruocco, G ;
Zamponi, F .
EUROPHYSICS LETTERS, 2003, 62 (06) :775-781
[3]  
[Anonymous], 1960, ELEMENTARY PRINCIPLE
[4]  
[Anonymous], 2009, SPRINGER
[5]   Critical properties of the spherical model in the microcanonical formalism [J].
Behringer, H .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :249-263
[6]   Continuous phase transitions with a convex dip in the microcanonical entropy [J].
Behringer, Hans ;
Pleimling, Michel .
PHYSICAL REVIEW E, 2006, 74 (01)
[7]   Geometry of dynamics, Lyapunov exponents, and phase transitions [J].
Caiani, L ;
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (22) :4361-4364
[8]   Negative magnetic susceptibility and nonequivalent ensembles for the mean-field φ4 spin model [J].
Campa, Alessandro ;
Ruffo, Stefano ;
Touchette, Hugo .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 385 (01) :233-248
[9]   Microcanonical solution of the mean-field φ4 model:: Comparison with time averages at finite size [J].
Campa, Alessandro ;
Ruffo, Stefano .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (02) :517-528
[10]   Derivation of the Boltzmann principle [J].
Campisi, Michele ;
Kobe, Donald H. .
AMERICAN JOURNAL OF PHYSICS, 2010, 78 (06) :608-615