Parseval frame wavelets with En(2) dilations

被引:35
|
作者
Bakic, D
Krishtal, I
Wilson, EN
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
[2] Washington Univ, Dept Math, St Louis, MO 63130 USA
关键词
parseval frame; wavelet; multiresolution analysis; filter; multiplier;
D O I
10.1016/j.acha.2004.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Parseval frame wavelets in L-2(R-n) With matrix dilations of the form (Df)(x) = root 2f (Ax), where A is an arbitrary expanding n x it matrix with integer coefficients, such that |det A| = 2. We show that each A-MRA admits either Parseval frame wavelets, or Parseval frame bi-wavelets. The minimal number of generators for a Parseval frame associated with an A-MRA (i.e. I or 2) is determined in terms of a scaling function. All Parseval frame (bi)wavelets associated with A-MRA's are described. We then introduce new classes of filter induced wavelets and bi-wavelets. It is proved that these new classes strictly contain the classes of all A-MRA Parseval frame wavelets and bi-wavelets, respectively. Finally, we demonstrate a method of constructing all filter induced Parseval frame (bi)wavelets from generalized low-pass filters. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:386 / 431
页数:46
相关论文
共 50 条
  • [1] Orthonormal dilations of Parseval wavelets
    Dorin Ervin Dutkay
    Deguang Han
    Gabriel Picioroaga
    Qiyu Sun
    Mathematische Annalen, 2008, 341 : 483 - 515
  • [2] Orthonormal dilations of Parseval wavelets
    Dutkay, Dorin Ervin
    Han, Deguang
    Picioroaga, Gabriel
    Sun, Qiyu
    MATHEMATISCHE ANNALEN, 2008, 341 (03) : 483 - 515
  • [3] Parseval frame scaling sets and MSF Parseval frame wavelets
    Liu, Zhanwei
    Hu, Guoen
    Lu, Zhibo
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1966 - 1974
  • [4] The Characterization of Parseval Frame Wavelets
    Xin Xiang ZHANGGuo Chang WU College of InformationHenan University of Finance and EconomicsHenan PRChina
    数学研究与评论, 2011, 31 (02) : 242 - 250
  • [5] The Characterization of Parseval Frame Wavelets
    Xin Xiang ZHANG
    Journal of Mathematical Research with Applications, 2011, (02) : 242 - 250
  • [6] On Parseval super-frame wavelets
    LI Zhongyan SHI XianliangCollege of Mathematics and Computer ScienceKey Laboratory of High Performance Computing and Stochastic Information ProcessingHPCSIPMinistry of Education of China Hunan Normal UniversityChangsha ChinaDepartment of Mathematics and PhysicsNorth China Electric Power UniversityBeijing China
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2012, 27 (02) : 192 - 204
  • [7] On Parseval super-frame wavelets
    LI Zhong-yan1
    Applied Mathematics:A Journal of Chinese Universities, 2012, (02) : 192 - 204
  • [8] On Parseval super-frame wavelets
    Li Zhong-yan
    Shi Xian-liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (02) : 192 - 204
  • [9] On Parseval super-frame wavelets
    Zhong-yan Li
    Xian-liang Shi
    Applied Mathematics-A Journal of Chinese Universities, 2012, 27 : 192 - 204
  • [10] Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA
    Liu, Zhanwei
    Hu, Guoen
    Wu, Guochang
    Jiang, Bin
    CHAOS SOLITONS & FRACTALS, 2008, 38 (05) : 1449 - 1456