Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nanodots with inorganic crystalline nanocomposites

被引:146
作者
Green, David C. [1 ]
Holden, Mark A. [1 ,2 ]
Levenstein, Mark A. [1 ,3 ]
Zhang, Shuheng [1 ]
Johnson, Benjamin R. G. [2 ]
Gala de Pablo, Julia [2 ]
Ward, Andrew [4 ]
Botchway, Stanley W. [4 ]
Meldrum, Fiona C. [1 ]
机构
[1] Univ Leeds, Sch Chem, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Leeds, Sch Mech Engn, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, England
[4] Rutherford Appleton Lab, Cent Laser Facil, Sci & Technol Facil Council, Res Complex Harwell, Didcot OX11 0QX, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
QUANTUM DOTS; CALCIUM-CARBONATE; SCALE SYNTHESIS; FOLIC-ACID; WATER; INDUCTION; GROWTH;
D O I
10.1038/s41467-018-08214-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is a significant drive to identify alternative materials that exhibit room temperature phosphorescence for technologies including bio-imaging, photodynamic therapy and organic light-emitting diodes. Ideally, these materials should be non-toxic and cheap, and it will be possible to control their photoluminescent properties. This was achieved here by embedding carbon nanodots within crystalline particles of alkaline earth carbonates, sulphates and oxalates. The resultant nanocomposites are luminescent and exhibit a bright, sub-second lifetime afterglow. Importantly, the excited state lifetimes, and steady-state and afterglow colours can all be systematically controlled by varying the cations and anions in the host inorganic phase, due to the influence of the cation size and material density on emissive and non-emissive electronic transitions. This simple strategy provides a flexible route for generating materials with specific, phosphorescent properties and is an exciting alternative to approaches relying on the synthesis of custom-made luminescent organic molecules.
引用
收藏
页数:13
相关论文
共 54 条
[1]  
An ZF, 2015, NAT MATER, V14, P685, DOI [10.1038/NMAT4259, 10.1038/nmat4259]
[2]  
[Anonymous], DATASET CONTROLLING
[3]   Activating efficient room temperature phosphorescence of carbon dots by synergism of orderly non-noble metals and dual structural confinements [J].
Bai, Li Qian ;
Xue, Ning ;
Wang, Xin Rui ;
Shi, Wen Ying ;
Lu, Chao .
NANOSCALE, 2017, 9 (20) :6658-6664
[4]   Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism [J].
Bao, Lei ;
Zhang, Zhi-Ling ;
Tian, Zhi-Quan ;
Zhang, Li ;
Liu, Cui ;
Lin, Yi ;
Qi, Baoping ;
Pang, Dai-Wen .
ADVANCED MATERIALS, 2011, 23 (48) :5801-5806
[5]  
Becker R.S., 1969, Theory and interpretation of fluorescence and phosphorescence
[6]  
Bolton O, 2011, NAT CHEM, V3, P205, DOI [10.1038/nchem.984, 10.1038/NCHEM.984]
[7]   Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates [J].
Chen, Yonghao ;
He, Jiangling ;
Hu, Chaofan ;
Zhang, Haoran ;
Lei, Bingfu ;
Liu, Yingliang .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (25) :6243-6250
[8]   Functional IrIII Complexes and Their Applications [J].
Chen, Zhu-qi ;
Bian, Zu-qiang ;
Huang, Chun-hui .
ADVANCED MATERIALS, 2010, 22 (13) :1534-1539
[9]   Synthesis and characterization of the barium oxalates BaC2O4•0.5H2O, α-BaC2O4 and β-BaC2O4 [J].
Christensen, AN ;
Hazell, RG ;
Madsen, IC .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 (05) :808-814
[10]   Thermal analysis and crystal structure of tetragonal strontium oxalate dihydrate and of triclinic strontium oxalate hydrate [J].
Christensen, AN ;
Hazell, RG .
ACTA CHEMICA SCANDINAVICA, 1998, 52 (04) :508-512