Creep behavior and deformation mechanisms in a nanocluster strengthened ferritic steel

被引:69
作者
Brandes, M. C. [1 ]
Kovarik, L. [1 ]
Miller, M. K. [2 ]
Daehn, G. S. [1 ]
Mills, M. J. [1 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
Oxide dispersion strengthened steel; Creep; High resolution scanning transmission electron microscopy; Dislocation glide; Kocks-Argon-Ashby model; ELASTIC-CONSTANTS; TEMPERATURE-DEPENDENCE; SCREW DISLOCATIONS; SELF-DIFFUSION; STABILITY; ALLOYS; MODULI; IRON; TI; PARTICLES;
D O I
10.1016/j.actamat.2011.11.057
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mechanically alloyed, nanostructured ferritic steels represent a class of alloys that can display high resistance to radiation and creep deformation, which are derived from the presence of nanoclusters, precipitates and solute segregation to the grain boundaries. The creep responses for a 14YWT nanostructured ferritic steel were measured over a range of temperatures and stress levels. The stress exponent was observed to vary non-linearly with applied stress; stress exponents were found to decrease with decreasing stress approaching unity at low stress. Transmission electron microscopy studies clearly demonstrated that creep deformation proceeds by a dislocation glide within nanoscale grains and that glide dislocations are attracted to and pinned by nanoclusters. In light of these observations, a new model of the creep response, inspired by the Kocks-Argon-Ashby model, is developed to explain the low creep rates and small stress exponents that are exhibited by these alloys. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1827 / 1839
页数:13
相关论文
共 65 条
[21]   Structure, radiation resistance and thermal creep of ODS ferritic steels [J].
Goshchitskii, BN ;
Sagaradze, VV ;
Shalaev, VI ;
Arbuzov, VL ;
Tian, Y ;
Qun, W ;
Sun, JG .
JOURNAL OF NUCLEAR MATERIALS, 2002, 307 (1 SUPPL.) :783-787
[22]   Creep response and deformation processes in nanocluster-strengthened ferritic steels [J].
Hayashi, T. ;
Sarosi, P. M. ;
Schneibel, J. H. ;
Mills, M. J. .
ACTA MATERIALIA, 2008, 56 (07) :1407-1416
[23]   Cyclic stress-strain response of the ODS nickel-base, superalloy PM 1000 under variable amplitude loading at high temperatures [J].
Heilmaier, M ;
Maier, HJ ;
Jung, A ;
Nganbe, M ;
Müller, FEH ;
Christ, HJ .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 281 (1-2) :37-44
[24]   Influence of particle dispersions on the high-temperature strength of ferritic alloys [J].
Hoelzer, D. T. ;
Bentley, J. ;
Sokolov, M. A. ;
Miller, M. K. ;
Odette, G. R. ;
Alinger, M. J. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 367 (SPEC. ISS.) :166-172
[25]   Prediction of structural, electronic and elastic properties of Y2Ti2O7 and Y2TiO5 [J].
Jiang, Yong ;
Smith, John R. ;
Odette, G. Robert .
ACTA MATERIALIA, 2010, 58 (05) :1536-1543
[26]  
Kassner ME, 2009, FUNDAMENTALS OF CREEP IN METALS AND ALLOYS, 2ND EDITION, P1
[27]   ELASTIC-MODULI OF PARAMAGNETIC CHROMIUM AND TI-V-CR ALLOYS [J].
KATAHARA, KW ;
NIMALENDRAN, M ;
MANGHNANI, MH ;
FISHER, ES .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1979, 9 (11) :2167-2176
[28]   Stability of Y-Ti complex oxides in Fe-16Cr-0.1Ti ODS ferritic steel before and after heavy-ion irradiation [J].
Kishimoto, H. ;
Kasada, R. ;
Hashitomi, O. ;
Kimura, A. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 386-88 :533-536
[29]   HRTEM Study of yttrium oxide particles in ODS steels for fusion reactor application [J].
Klimiankou, M ;
Lindau, R ;
Möslang, A .
JOURNAL OF CRYSTAL GROWTH, 2003, 249 (1-2) :381-387
[30]   Tensile and creep properties of an oxide dispersion- strengthened ferritic steel [J].
Klueh, RL ;
Maziasz, PJ ;
Kim, IS ;
Heatherly, L ;
Hoelzer, DT ;
Hashimoto, N ;
Kenik, EA ;
Miyahara, K .
JOURNAL OF NUCLEAR MATERIALS, 2002, 307 :773-777