CORRIGENDUM TO THE MINIMUM MATCHING ENERGY OF BICYCLIC GRAPHS WITH GIVEN GIRTH

被引:1
作者
Ma, Gang [1 ]
Ji, Shengjin [1 ]
Wang, Jianfeng [1 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo, Shandong, Peoples R China
关键词
Matching energy; bicyclic graph; girth; RESPECT;
D O I
10.1216/RMJ-2018-48-6-1983
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The matching energy of a graph was introduced by Gutman and Wagner in 2012 and defined as the sum of the absolute values of zeros of its matching polynomial. In [16], the main result, Theorem 3.4, is in error. In this paper, the correct result is given.
引用
收藏
页码:1983 / 1992
页数:10
相关论文
共 23 条
[1]  
[Anonymous], 2012, Graph Energy
[2]  
Bondy J.A., 2008, GTM
[3]   The bipartite unicyclic graphs with the first left perpendicularn-3/4right perpendicular largest matching energies [J].
Chen, Lin ;
Liu, Jinfeng .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 :644-656
[4]  
Chen L, 2015, MATCH-COMMUN MATH CO, V73, P105
[5]   The matching energy of random graphs [J].
Chen, Xiaolin ;
Li, Xueliang ;
Lian, Huishu .
DISCRETE APPLIED MATHEMATICS, 2015, 193 :102-109
[6]   INTRODUCTION TO MATCHING POLYNOMIALS [J].
FARRELL, EJ .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (01) :75-86
[7]   ACYCLIC SYSTEMS WITH EXTREMAL HUCKEL PI-ELECTRON ENERGY [J].
GUTMAN, I .
THEORETICA CHIMICA ACTA, 1977, 45 (02) :79-87
[8]  
Gutman I, 2001, ALGEBRAIC COMBINATORICS AND APPLICATIONS, P196
[9]  
Gutman I., 2009, ANAL COMPLEX NETWORK
[10]  
Gutman I., 1979, MATCH Commun. Math. Comput. Chem., V6, P75