Modelling the spectral energy distribution of galaxies: introducing the artificial neural network

被引:27
|
作者
Silva, L. [1 ]
Schurer, A. [2 ]
Granato, G. L. [1 ]
Almeida, C. [3 ,4 ]
Baugh, C. M. [3 ]
Frenk, C. S. [3 ]
Lacey, C. G. [3 ]
Paoletti, L. [5 ]
Petrella, A. [5 ]
Selvestrel, D. [5 ]
机构
[1] INAF OATs, I-34131 Trieste, Italy
[2] Univ Edinburgh, Grant Inst, Sch Geosci, Edinburgh EH9 3JW, Midlothian, Scotland
[3] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England
[4] Chinese Acad Sci, Shanghai Astron Observ, Key Lab Res Galaxies & Cosmol, Beijing 100864, Peoples R China
[5] INAF OAPd, I-35122 Padua, Italy
关键词
radiative transfer; methods: numerical; galaxies: evolution; infrared: galaxies; ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES; RADIATIVE-TRANSFER; STARBURST GALAXIES; INFRARED-EMISSION; INTERSTELLAR DUST; SUBMILLIMETER GALAXIES; SPIRAL GALAXIES; RADIO-EMISSION; DIRTY MODEL;
D O I
10.1111/j.1365-2966.2010.17580.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The spectral energy distribution (SED) of galaxies is a complex function of the star formation history and geometrical arrangement of stars and gas in galaxies. The computation of the radiative transfer of stellar radiation through the dust distribution is time-consuming. This aspect becomes unacceptable in particular when dealing with the predictions by semi-analytical galaxy formation models populating cosmological volumes, to be then compared with multi-wavelength surveys. Mainly for this aim, we have implemented an artificial neural network (ANN) algorithm into the spectro-photometric and radiative transfer code grasil in order to compute the SED of galaxies in a short computing time. This allows to avoid the adoption of empirical templates that may have nothing to do with the mock galaxies output by models. The ANN has been implemented to compute the dust emission spectrum (the bottleneck of the computation), and separately for the star-forming molecular clouds (MC) and the diffuse dust (due to their different properties and dependencies). We have defined the input neurons effectively determining their emission, which means this implementation has a general applicability and is not linked to a particular galaxy formation model. We have trained the net for the disc and spherical geometries, and tested its performance to reproduce the SED of disc and starburst galaxies, as well as for a semi-analytical model for spheroidal galaxies. We have checked that for this model both the SEDs and the galaxy counts in the Herschel bands obtained with the ANN approximation are almost superimposed to the same quantities obtained with the full grasil. We conclude that this method appears robust and advantageous, and will present the application to a more complex SAM in another paper.
引用
收藏
页码:2043 / 2056
页数:14
相关论文
共 50 条
  • [1] Modelling the spectral energy distribution of galaxies: Introducing the artificial neural network
    Silva, L.
    Schurer, A.
    Granato, G.L.
    Almeida, C.
    Baugh, C.M.
    Frenk, C.S.
    Lacey, C.G.
    Paoletti, L.
    Petrella, A.
    Selvestrel, D.
    Monthly Notices of the Royal Astronomical Society, 2011, 410 (03): : 2043 - 2056
  • [2] Modelling the spectral energy distribution of galaxies from the ultraviolet to submillimeter
    Popescu, CC
    Tuffs, RJ
    JENAM 2001: ASTRONOMY WITH LARGE TELESCOPES FROM GROUND AND SPACE, 2002, 15 : 239 - 258
  • [3] Constraining the properties of AGN host galaxies with spectral energy distribution modelling
    Ciesla, L.
    Charmandaris, V.
    Georgakakis, A.
    Bernhard, E.
    Mitchell, P. D.
    Buat, V.
    Elbaz, D.
    LeFloc'h, E.
    Lacey, C. G.
    Magdis, G. E.
    Xilouris, M.
    ASTRONOMY & ASTROPHYSICS, 2015, 576
  • [4] Modelling the spectral energy distribution of galaxies -: III.: Attenuation of stellar light in spiral galaxies
    Tuffs, RJ
    Popescu, CC
    Völk, HJ
    Kylafis, ND
    Dopita, MA
    ASTRONOMY & ASTROPHYSICS, 2004, 419 (03) : 821 - 835
  • [5] Modelling the spectral energy distribution of spiral galaxies from the UV to FIR/submm
    Popescu, CC
    Tuffs, RJ
    PROCEEDINGS OF THE DUSTY AND MOLECULAR UNIVERSE: A PRELUDE TO HERSCHEL AND ALMA, 2005, 577 : 311 - 312
  • [6] Modelling the spectral energy distribution of galaxies V. The dust and PAH emission SEDs of disk galaxies
    Popescu, C. C.
    Tuffs, R. J.
    Dopita, M. A.
    Fischera, J.
    Kylafis, N. D.
    Madore, B. F.
    ASTRONOMY & ASTROPHYSICS, 2011, 527
  • [7] SPECTRAL CLASSIFICATION OF GALAXIES AT 0.5 ≤ z ≤ 1 IN THE CDFS: THE ARTIFICIAL NEURAL NETWORK APPROACH
    Teimoorinia, H.
    ASTRONOMICAL JOURNAL, 2012, 144 (06):
  • [8] Necessity of introducing chaos into artificial neural network
    Lu, Zhengdong
    Yan, Pingfan
    Beijing Shengwu Yixue Gongcheng/Beijing Biomedical Engineering, 2002, 21 (03):
  • [9] Predicting the ages of galaxies with an artificial neural network
    Hunt, Laura J.
    Pimbblet, Kevin A.
    Benoit, David M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 529 (01) : 479 - 498
  • [10] The spectral energy distribution of powerful starburst galaxies - I. Modelling the radio continuum
    Galvin, T. J.
    Seymour, N.
    Marvil, J.
    Filipovic, M. D.
    Tothill, N. F. H.
    McDermid, R. M.
    Hurley-Walker, N.
    Hancock, P. J.
    Callingham, J. R.
    Cook, R. H.
    Norris, R. P.
    Bell, M. E.
    Dwarakanath, K. S.
    For, B.
    Gaensler, B. M.
    Hindson, L.
    Johnston-Hollitt, M.
    Kapinska, A. D.
    Lenc, E.
    McKinley, B.
    Morgan, J.
    Offringa, A. R.
    Procopio, P.
    Staveley-Smith, L.
    Wayth, R. B.
    Wu, C.
    Zheng, Q.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (01) : 779 - 799