Extremal trees for the Randic index with given domination number

被引:31
作者
Bermudo, Sergio [1 ]
Napoles, Juan E. [2 ]
Rada, Juan [3 ]
机构
[1] Pablo de Olavide Univ, Dept Econ Quantitat Methods & Econ Hist, Carretera Utrera Km 1, Seville 41013, Spain
[2] Univ Nacl Nordeste, Fac Ciencias Exactas & Nat & Agrimensura, RA-3400 Corrientes Capital, Argentina
[3] Univ Antioquia, Inst Matemat, Medellin, Colombia
关键词
Randic index; Domination number; DISTANCE;
D O I
10.1016/j.amc.2020.125122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Randic index is the topological index most widely used in applications for chemistry and pharmacology. It is defined for a graph G with vertex set V(G) and edge set E(G) as R(G) = Sigma(uv is an element of E(G)) 1/root deg(u)deg(v), where deg (u) and deg (v) denote the degrees of the vertices u, v is an element of V(G). In this paper we find upper and lower bounds of the Randic index of trees in terms of the order and the domination number. The extremal trees are characterized. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 13 条
[1]  
[Anonymous], 2008, Handbook of Molecular Descriptors
[2]   On extremal Zagreb indices of trees with given domination number [J].
Borovicanin, Bojana ;
Furtula, Boris .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 279 :208-218
[3]   Average distance and domination number [J].
Dankelmann, P .
DISCRETE APPLIED MATHEMATICS, 1997, 80 (01) :21-35
[4]  
Devillers J., 1999, QSAR QSPR
[5]  
He CX, 2010, MATCH-COMMUN MATH CO, V64, P169
[6]  
Kier L., 1986, MOL CONNECTIVITY STR
[7]  
Kier L. B., 1976, MOL CONNECTIVITY CHE
[8]   Some extremal properties of the multiplicatively weighted Harary index of a graph [J].
Li, Shuchao ;
Zhang, Huihui .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) :961-978
[9]   Four edge-grafting theorems on the reciprocal degree distance of graphs and their applications [J].
Li, Shuchao ;
Meng, Xian .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (03) :468-488
[10]  
Li XL, 2008, MATCH-COMMUN MATH CO, V59, P127