PhenClust, a standalone tool for identifying trends within sets of biological phenotypes using semantic similarity and the Unified Medical Language System metathesaurus

被引:2
作者
Wilson, Jennifer L. [1 ]
Wong, Mike [2 ]
Stepanov, Nicholas [3 ]
Petkovic, Dragutin [2 ,3 ]
Altman, Russ [4 ,5 ]
机构
[1] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[2] San Francisco State Univ, CoSE Comp Life Sci, San Francisco, CA 94132 USA
[3] San Francisco State Univ, Dept Comp Sci, San Francisco, CA 94132 USA
[4] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
关键词
systems biology; phenotype analysis; high-throughput analysis; network analysis; computational tools; Docker containers; METAMAP;
D O I
10.1093/jamiaopen/ooab079
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objectives: We sought to cluster biological phenotypes using semantic similarity and create an easy-to-install, stable, and reproducible tool. Materials and Methods: We generated Phenotype Clustering (PhenClust)-a novel application of semantic similarity for interpreting biological phenotype associations-using the Unified Medical Language System (UMLS) metathesaurus, demonstrated the tool's application, and developed Docker containers with stable installations of two UMLS versions. Results: PhenClust identified disease clusters for drug network-associated phenotypes and a meta-analysis of drug target candidates. The Dockerized containers eliminated the requirement that the user install the UMLS metathesaurus. Discussion: Clustering phenotypes summarized all phenotypes associated with a drug network and two drug candidates. Docker containers can support dissemination and reproducibility of tools that are otherwise limited due to insufficient software support. Conclusion: PhenClust can improve interpretation of high-throughput biological analyses where many phenotypes are associated with a query and the Dockerized PhenClust achieved our objective of decreasing installation complexity.
引用
收藏
页数:5
相关论文
共 10 条
[1]   Meta-analysis of microarray data using a pathway-based approach identifies a 37-gene expression signature for systemic lupus erythematosus in human peripheral blood mononuclear cells [J].
Arasappan, Dhivya ;
Tong, Weida ;
Mummaneni, Padmaja ;
Fang, Hong ;
Amur, Shashi .
BMC MEDICINE, 2011, 9
[2]   An overview of MetaMap: historical perspective and recent advances [J].
Aronson, Alan R. ;
Lang, Francois-Michel .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2010, 17 (03) :229-236
[3]  
Boettiger Carl, 2015, ACM SIGOPS Operating Systems Review, V49, P71
[4]   Using Docker Containers to Improve Reproducibility in Software and Web Engineering Research [J].
Cito, Jurgen ;
Ferme, Vincenzo ;
Gall, Harald C. .
WEB ENGINEERING (ICWE 2016), 2016, 9671 :609-612
[5]   MetaMap Lite: an evaluation of a new Java']Java implementation of MetaMap [J].
Demner-Fushman, Dina ;
Rogers, Willie J. ;
Aronson, Alan R. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2017, 24 (04) :841-844
[6]   PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations [J].
Denny, Joshua C. ;
Ritchie, Marylyn D. ;
Basford, Melissa A. ;
Pulley, Jill M. ;
Bastarache, Lisa ;
Brown-Gentry, Kristin ;
Wang, Deede ;
Masys, Dan R. ;
Roden, Dan M. ;
Crawford, Dana C. .
BIOINFORMATICS, 2010, 26 (09) :1205-1210
[7]   Improving the usability and archival stability of bioinformatics software [J].
Mangul, Serghei ;
Martin, Lana S. ;
Eskin, Eleazar ;
Blekhman, Ran .
GENOME BIOLOGY, 2019, 20 (1)
[8]  
McInnes Bridget T, 2009, AMIA Annu Symp Proc, V2009, P431
[9]   PathFXweb: a web application for identifying drug safety and efficacy phenotypes [J].
Wilson, Jennifer L. ;
Wong, Mike ;
Chalke, Ajinkya ;
Stepanov, Nicholas ;
Petkovic, Dragutin ;
Altman, Russ B. .
BIOINFORMATICS, 2019, 35 (21) :4504-4506
[10]   PathFX provides mechanistic insights into drug efficacy and safety for regulatory review and therapeutic development [J].
Wilson, Jennifer L. ;
Racz, Rebecca ;
Liu, Tianyun ;
Adeniyi, Oluseyi ;
Sun, Jielin ;
Ramamoorthy, Anuradha ;
Pacanowski, Michael ;
Altman, Russ .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (12)