Normal correlation coefficient of non-normal variables using piece-wise linear approximation

被引:12
|
作者
Kugiumtzis, Dimitris [1 ]
Bora-Senta, Efthymia [2 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math Phys & Computat Sci, Fac Engn, Thessaloniki 54124, Greece
[2] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
关键词
Correlation coefficient; Truncated normal distribution; Normal-to-anything transform; Nonlinear dependence; Randomization test; TIME-SERIES; BIVARIATE; DISTRIBUTIONS; GENERATION;
D O I
10.1007/s00180-010-0195-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The correlation coefficient of non-normal variables is expressed as a function of the correlation coefficient of normal variables using piece-wise linear approximation of each univariate transform of normal to anything, and the second order moments of a multiply truncated bivariate normal distribution. For the inverse problem, an algorithm iterates this analytic function in order to assign a normal correlation coefficient to two non-normal variables. The algorithm is applied for the generation of randomized bivariate samples with given correlation coefficient and marginal distributions and used in a randomization test for bivariate nonlinearity. The test correctly does not reject the null hypothesis of linear correlation if the nonlinearity is plausible and due to the sample transform alone.
引用
收藏
页码:645 / 662
页数:18
相关论文
共 50 条
  • [1] Normal correlation coefficient of non-normal variables using piece-wise linear approximation
    Dimitris Kugiumtzis
    Efthymia Bora-Senta
    Computational Statistics, 2010, 25 : 645 - 662
  • [2] Piece-wise linear approximation of functions of two variables
    Babayev Djangir A.
    Journal of Heuristics, 1997, 2 (4) : 313 - 320
  • [3] Polynomial and piece-wise linear approximation of smart transducer errors
    Didenko, V
    Minin, A
    Movchan, A
    MEASUREMENT, 2002, 31 (01) : 61 - 69
  • [4] NORMALITY OF LINEAR COMBINATIONS OF NON-NORMAL RANDOM VARIABLES
    KALE, BK
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (09): : 992 - &
  • [5] Trajectory piece-wise quasi-linear approximation of large non-linear dynamic systems
    Nahvi, Shahkar Ahmad
    Mashuq-un-Nabi
    Janardhanan, S.
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2013, 19 (04) : 369 - 377
  • [6] Online Piece-wise Linear Approximation of Numerical Streams with Precision Guarantees
    Elmeleegy, Hazem
    Elmagarmid, Ahmed K.
    Cecchett, Emmanuel
    Aref, Walid G.
    Zwaenepoel, Willy
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2009, 2 (01):
  • [7] Piece-wise Quasi-linear Approximation for Nonlinear Model Reduction
    Nahvi, S. A.
    Nabi, M.
    Janardhanan, S.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2013, 32 (12) : 2009 - 2013
  • [8] A NOTE ON NON-NORMAL CORRELATION
    HALDANE, JBS
    BIOMETRIKA, 1949, 36 (3-4) : 467 - 468
  • [9] Identifying code phases using piece-wise linear regressions
    Servat, Harald
    Llort, German
    Gonzalez, Juan
    Gimenez, Judit
    Labarta, Jesus
    2014 IEEE 28TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, 2014,
  • [10] The Moran coefficient for non-normal data
    Griffith, Daniel A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 2980 - 2990