Orientation-Encoding CNN for Point Cloud Classification and Segmentation

被引:7
作者
Lin, Hongbin [1 ]
Zheng, Wu [2 ]
Peng, Xiuping [2 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Hebei, Peoples R China
基金
国家重点研发计划;
关键词
point clouds; orientation-encoding (OE) convolution; local geometric feature; classification; segmentation;
D O I
10.3390/make3030031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the introduction of effective and general deep learning network frameworks, deep learning based methods have achieved remarkable success in various visual tasks. However, there are still tough challenges in applying them to convolutional neural networks due to the lack of a potential rule structure of point clouds. Therefore, by taking the original point clouds as the input data, this paper proposes an orientation-encoding (OE) convolutional module and designs a convolutional neural network for effectively extracting local geometric features of point sets. By searching for the same number of points in 8 directions and arranging them in order in 8 directions, the OE convolution is then carried out according to the number of points in the direction, which realizes the effective feature learning of the local structure of the point sets. Further experiments on diverse datasets show that the proposed method has competitive performance on classification and segmentation tasks of point sets.
引用
收藏
页码:601 / 614
页数:14
相关论文
共 25 条
[1]  
[Anonymous], 2015, P IEEE C COMP VIS PA
[2]   Pointwise Convolutional Neural Networks [J].
Binh-Son Hua ;
Minh-Khoi Tran ;
Yeung, Sai-Kit .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :984-993
[3]  
Chang AX., 2015, ShapeNet: an InformationRich 3D Model Repository, V1512, P03012
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[6]   3D Semantic Segmentation with Submanifold Sparse Convolutional Networks [J].
Graham, Benjamin ;
Engelcke, Martin ;
van der Maaten, Laurens .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9224-9232
[7]  
Huang G., P 2017 IEEE C COMP V, P2261
[8]  
Jiang M., 2018, arXiv
[9]   Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models [J].
Klokov, Roman ;
Lempitsky, Victor .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :863-872
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90