DISCONTINUOUS GALERKIN METHOD FOR SOLVING 2D DISSIPATIVE SEISMIC WAVE EQUATIONS

被引:0
作者
He, Xijun [1 ]
Qiu, Chujun [2 ]
Sun, Jianqiang [3 ]
机构
[1] Beijing Technol & Business Univ BTBU, Sch Math & Stat, Beijing 100048, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100000, Peoples R China
[3] Hainan Univ, Dept Math Sci, Haikou 100000, Hainan, Peoples R China
来源
JOURNAL OF SEISMIC EXPLORATION | 2022年 / 31卷 / 02期
基金
中国国家自然科学基金;
关键词
discontinuous Galerkin method; D'Alembert media; dispersion; dissipation; numerical modelling; FINITE-ELEMENT METHODS; UNSTRUCTURED MESHES; ELASTIC-WAVES; PROPAGATION; ORDER; SURFACE; MEDIA; DISPERSION; STABILITY;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismic dissipation widely exists in underground media. To develop a detailed understanding of wave propagation in dissipative media, in this study, we introduce a discontinuous Galerkin (DG) method for solving acoustic and elastic wave equations in D'Alembert media. This method uses the numerical flux-based DG formulations with the explicit 3rd-order total variation diminishing (TVD) time discretization. We first derive an empirical formula for numerical stability conditions, which shows that the relative error of the Courant-Friedrichs-Lewy (CFL) condition numbers between the actual the numerical cases does not exceed 3%. The analyses also show that both the dispersion and dissipation in D'Alembert media are frequency dependent, and have a strong correlation with the dissipation factor. Finally, we present some numerical experiments. The quantitative comparisons of the attenuation ratios of the waveforms show that they are close to the theoretical ones, verifying the findings of the analyses. In particular, for elastic waves, the relative errors between the numerical attenuation ratios and the theoretical ones do not exceed 4%. The simulation of dissipative elastic wave propagation in a model with surface topography indicates our method is capable of dealing with complex geometry.
引用
收藏
页码:153 / 176
页数:24
相关论文
共 37 条
[1]  
Aki K., 2002, Quantitative Seismology
[2]   Rock anelasticity due to patchy saturation and fabric heterogeneity: A double double-porosity model of wave propagation [J].
Ba, Jing ;
Xu, Wenhao ;
Fu, Li-Yun ;
Carcione, Jose M. ;
Zhang, Lin .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2017, 122 (03) :1949-1976
[3]   Dissipation-preserving spectral element method for damped seismic wave equations [J].
Cai, Wenjun ;
Zhang, Huai ;
Wang, Yushun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 :260-279
[4]  
Carcione J. M., 1995, Journal of Computational Acoustics, V3, P261, DOI 10.1142/S0218396X95000136
[5]   A RHEOLOGICAL MODEL FOR ANELASTIC ANISOTROPIC MEDIA WITH APPLICATIONS TO SEISMIC-WAVE PROPAGATION [J].
CARCIONE, JM ;
CAVALLINI, F .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1994, 119 (01) :338-348
[6]   SEISMIC MODELING IN VISCOELASTIC MEDIA [J].
CARCIONE, JM .
GEOPHYSICS, 1993, 58 (01) :110-120
[7]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[8]   The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion [J].
De Basabe, Jonas D. ;
Sen, Mrinal K. ;
Wheeler, Mary F. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 175 (01) :83-93
[9]  
De Hoop AT, 1960, APPL SCIENT RES B, V8, P349, DOI DOI 10.1007/BF02920068
[10]   Discontinuous Galerkin methods for wave propagation in poroelastic media [J].
de la Puente, Josep ;
Dumbser, Michael ;
Kaeser, Martin ;
Igel, Heiner .
GEOPHYSICS, 2008, 73 (05) :T77-T97