Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization

被引:408
作者
Nguyen, XuanLong [1 ]
Wainwright, Martin J. [2 ,3 ]
Jordan, Michael I. [2 ,3 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Convex optimization; density ratio estimation; divergence estimation; Kullback-Leibler (KL) divergence; f-divergence; M-estimation; reproducing kernel Hilbert space (RKHS); surrogate loss functions; INTEGRAL FUNCTIONALS;
D O I
10.1109/TIT.2010.2068870
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop and analyze M-estimation methods for divergence functionals and the likelihood ratios of two probability distributions. Our method is based on a nonasymptotic variational characterization of f-divergences, which allows the problem of estimating divergences to be tackled via convex empirical risk optimization. The resulting estimators are simple to implement, requiring only the solution of standard convex programs. We present an analysis of consistency and convergence for these estimators. Given conditions only on the ratios of densities, we show that our estimators can achieve optimal minimax rates for the likelihood ratio and the divergence functionals in certain regimes. We derive an efficient optimization algorithm for computing our estimates, and illustrate their convergence behavior and practical viability by simulations.
引用
收藏
页码:5847 / 5861
页数:15
相关论文
共 38 条
[1]  
ALI SM, 1966, J ROY STAT SOC B, V28, P131
[2]  
[Anonymous], 1988, PITMAN RES NOTES MAT
[3]  
[Anonymous], 2004, KERNEL METHODS PATTE
[4]  
BICKEL PJ, 1988, SANKHYA SER A, V50, P381
[5]   ESTIMATION OF INTEGRAL FUNCTIONALS OF A DENSITY [J].
BIRGE, L ;
MASSART, P .
ANNALS OF STATISTICS, 1995, 23 (01) :11-29
[6]  
Birman M. S., 1967, Sbornik: Mathematics, V2, P295, DOI 10.1070/SM1967v002n03ABEH002343
[7]  
BRONIATOWSKI M, 2009, J MULTIVAR ANAL, V100
[8]  
BRONIATOWSKI M, 2004, MATH METHODS STAT, P391
[9]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[10]  
Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed