Quantum control of a nanoparticle optically levitated in cryogenic free space

被引:250
作者
Tebbenjohanns, Felix [1 ]
Mattana, M. Luisa [1 ]
Rossi, Massimiliano [1 ]
Frimmer, Martin [1 ]
Novotny, Lukas [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Photon Lab, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Quantum Ctr, Zurich, Switzerland
基金
欧盟地平线“2020”;
关键词
SUPERCONDUCTING QUBIT; STATE; DECOHERENCE; OSCILLATOR; MECHANICS; NOISE;
D O I
10.1038/s41586-021-03617-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum control of an optically levitated nanoparticle with a mass of just one femtogram is demonstrated in a cryogenic environment by feedback-cooling the motion of the particle to the quantum ground state. Tests of quantum mechanics on a macroscopic scale require extreme control over mechanical motion and its decoherence(1-3). Quantum control of mechanical motion has been achieved by engineering the radiation-pressure coupling between a micromechanical oscillator and the electromagnetic field in a resonator(4-7). Furthermore, measurement-based feedback control relying on cavity-enhanced detection schemes has been used to cool micromechanical oscillators to their quantum ground states(8). In contrast to mechanically tethered systems, optically levitated nanoparticles are particularly promising candidates for matter-wave experiments with massive objects(9,10), since their trapping potential is fully controllable. Here we optically levitate a femtogram (10(-15) grams) dielectric particle in cryogenic free space, which suppresses thermal effects sufficiently to make the measurement backaction the dominant decoherence mechanism. With an efficient quantum measurement, we exert quantum control over the dynamics of the particle. We cool its centre-of-mass motion by measurement-based feedback to an average occupancy of 0.65 motional quanta, corresponding to a state purity of 0.43. The absence of an optical resonator and its bandwidth limitations holds promise to transfer the full quantum control available for electromagnetic fields to a mechanical system. Together with the fact that the optical trapping potential is highly controllable, our experimental platform offers a route to investigating quantum mechanics at macroscopic scales(11).
引用
收藏
页码:378 / +
页数:18
相关论文
共 67 条
[1]   Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor [J].
Ahn, Jonghoon ;
Xu, Zhujing ;
Bang, Jaehoon ;
Deng, Yu-Hao ;
Hoang, Thai M. ;
Han, Qinkai ;
Ma, Ren-Min ;
Li, Tongcang .
PHYSICAL REVIEW LETTERS, 2018, 121 (03)
[2]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[3]   FEEDBACK STABILIZATION OF OPTICALLY LEVITATED PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM .
APPLIED PHYSICS LETTERS, 1977, 30 (04) :202-204
[4]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[5]   Optical detection of radio waves through a nanomechanical transducer [J].
Bagci, T. ;
Simonsen, A. ;
Schmid, S. ;
Villanueva, L. G. ;
Zeuthen, E. ;
Appel, J. ;
Taylor, J. M. ;
Sorensen, A. ;
Usami, K. ;
Schliesser, A. ;
Polzik, E. S. .
NATURE, 2014, 507 (7490) :81-85
[6]   Near-field interferometry of a free-falling nanoparticle from a point-like source [J].
Bateman, James ;
Nimmrichter, Stefan ;
Hornberger, Klaus ;
Ulbricht, Hendrik .
NATURE COMMUNICATIONS, 2014, 5
[7]   Scheme to probe the decoherence of a macroscopic object [J].
Bose, S ;
Jacobs, K ;
Knight, PL .
PHYSICAL REVIEW A, 1999, 59 (05) :3204-3210
[8]  
Braginskii V B, 1977, Measurement of weak forces in physics experiments
[9]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[10]   Cavity opto-mechanics using an optically levitated nanosphere [J].
Chang, D. E. ;
Regal, C. A. ;
Papp, S. B. ;
Wilson, D. J. ;
Ye, J. ;
Painter, O. ;
Kimble, H. J. ;
Zoller, P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (03) :1005-1010