Object recognition via contextual color attention

被引:13
作者
Zhu, Jie [1 ,2 ]
Yu, Jian [1 ]
Wang, Chaomurilige [1 ]
Li, Fan-Zhang [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing Key Lab Traff Data Anal & Min, Beijing, Peoples R China
[2] Cent Inst Correct Police, Dept Informat Management, Baoding, Peoples R China
[3] Soochow Univ, Sch Comp Sci & Technol, Suzhou, Peoples R China
关键词
Object recognition; Color attention; Discriminative color; Strong patch; Weak patch; False weak patch; Contextual color attention; Optimal threshold of contextual color attention; CO-SEGMENTATION METHOD; TOP-DOWN; BOTTOM-UP; SALIENCY; INFORMATION;
D O I
10.1016/j.jvcir.2015.01.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual attention is effective in differentiating an object from its surroundings. Color is used to guide attention via a top-down category-specific attention map in the top-down color attention (CA) method. To uniformly highlight the entire object, our color attention map is reconstructed based on the estimated object patches. The object patches consist of strong patches and false weak patches whose contextual color attention values are beyond the optimal threshold of class-specific contextual color attention. The color attention map constructed by the object color histogram is then used to weight the local shape for object recognition. Extensive experiments are conducted to show that our method can provide stateof-the-art results on several challenging datasets. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:44 / 56
页数:13
相关论文
共 52 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]   Efficient object detection and segmentation for fine-grained recognition [J].
Angelova, Anelia ;
Zhu, Shenghuo .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :811-818
[3]   Top-down versus bottom-up attentional control: a failed theoretical dichotomy [J].
Awh, Edward ;
Belopolsky, Artem V. ;
Theeuwes, Jan .
TRENDS IN COGNITIVE SCIENCES, 2012, 16 (08) :437-443
[4]  
Borji A., 2012, CVPR, DOI DOI 10.1109/CVPR.2012.6247706
[5]   State-of-the-Art in Visual Attention Modeling [J].
Borji, Ali ;
Itti, Laurent .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) :185-207
[6]  
Chai YN, 2012, LECT NOTES COMPUT SC, V7572, P794, DOI 10.1007/978-3-642-33718-5_57
[7]  
Chai YN, 2011, IEEE I CONF COMP VIS, P2579, DOI 10.1109/ICCV.2011.6126546
[8]  
Chen Q, 2012, PROC CVPR IEEE, P3426, DOI 10.1109/CVPR.2012.6248083
[9]  
Chen TC, 2009, PROC EUR SOLID-STATE, P1
[10]  
Csurka G, 2004, WORKSH STAT LEARN CO, V1, P1, DOI DOI 10.1234/12345678