Dreibein as Prepotential for Three-Dimensional Yang-Mills Theory

被引:0
作者
Mitra, Indrajit [1 ]
Sharatchandra, H. S. [2 ]
机构
[1] Univ Calcutta, Dept Phys, 92 APC Rd, Kolkata 700009, India
[2] Ctr Promot Res, 7 Shaktinagar Main Rd, Madras 600116, Tamil Nadu, India
关键词
ABELIAN GAUGE-THEORIES; VARIABLES; FIELD; CONFINEMENT; MONOPOLES; TOPOLOGY;
D O I
10.1155/2017/6369505
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We advocate and develop the use of the dreibein (and the metric) as prepotential for three-dimensional SO(3) Yang-Mills theory. Since the dreibein transforms homogeneously under gauge transformation, the metric is gauge invariant. For a generic gauge potential, there is a unique dreibein on fixing the boundary condition. Topologically nontrivial monopole configurations are given by conformally flat metrics, with scalar fields capturing the monopole centres. Our approach also provides an ansatz for the gauge potential covering the topological aspects.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Dual gluons and monopoles in 2+1 dimensional Yang-Mills theory [J].
Anishetty, R ;
Majumdar, P ;
Sharatchandra, HS .
PHYSICS LETTERS B, 2000, 478 (1-3) :373-378
[2]   NEW VARIABLES FOR CLASSICAL AND QUANTUM-GRAVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW LETTERS, 1986, 57 (18) :2244-2247
[3]   SPATIAL GEOMETRY OF THE ELECTRIC-FIELD REPRESENTATION OF NON-ABELIAN GAUGE-THEORIES [J].
BAUER, M ;
FREEDMAN, DZ ;
HAAGENSEN, PE .
NUCLEAR PHYSICS B, 1994, 428 (1-2) :147-168
[4]   RESTRICTED GAUGE-THEORY [J].
CHO, YM .
PHYSICAL REVIEW D, 1980, 21 (04) :1080-1088
[5]   Gauge-invariant formulation of the d=3 Yang-Mills theory [J].
Diakonov, D ;
Petrov, V .
PHYSICS LETTERS B, 2000, 493 (1-2) :169-174
[6]   Aspects of electric and magnetic variables in SU(2) Yang-Mills theory [J].
Faddeev, L ;
Niemi, AJ .
PHYSICS LETTERS B, 2002, 525 (1-2) :195-200
[7]   Partially dual variables in SU(2) Yang-Mills theory [J].
Faddeev, L ;
Niemi, AJ .
PHYSICAL REVIEW LETTERS, 1999, 82 (08) :1624-1627
[8]   Decomposing the Yang-Mills field [J].
Faddeev, L ;
Niemi, AJ .
PHYSICS LETTERS B, 1999, 464 (1-2) :90-93
[9]   Spin-charge separation, conformal covariance and the SU(2) Yang-Mills theory [J].
Faddeev, Ludvig ;
Niemi, Antti J. .
NUCLEAR PHYSICS B, 2007, 776 (1-2) :38-65
[10]   Reformulations of Yang-Mills theories with space-time tensor fields [J].
Guo, Zhi-Qiang .
ANNALS OF PHYSICS, 2016, 364 :283-316